
Towards Multi-Domain Collaboration Toolkits

Jacob Bartel
Computer Science Department
University of North Carolina
Chapel Hill, NC 27514 USA

+1 919 962 1890
bartel@cs.unc.edu

Prasun Dewan
Computer Science Department
University of North Carolina
Chapel Hill, NC 27514 USA

+1 919 962 1823
dewan@unc.edu

ABSTRACT
A multi-domain collaboration toolkit hides heterogeneity of
user-interface toolkits and associated domains from both
programmers and end users of collaborative, widget-
synchronizing, applications. We have developed such a
system for the stand-alone, Eclipse, and web domains; and
the AWT, Swing, SWT, and GWT single-user toolkits
associated with these domains. Several new concepts are
supported to meet these requirements including a widget
server allowing a distributed widget client to manipulate
widgets on an interactive device, flexible widget
synchronization, flexible placement of widget listeners,
“piping” centralized non-interactive replicas
communicating with interactive user replicas, factory-based
retargeting of the user-interface toolkit, and a new process
architecture.

Author Keywords
Heterogeneity; distributed user-interfaces; user-interface
toolkits; web; multi-device interfaces

ACM Classification Keywords

D.2.2 [Software Engineering] Tools and Techniques –user
interfaces

General Terms
Design; Performance

INTRODUCTION
All forms of computer systems, such as hardware systems,
programming/command languages, and operating/ database
systems, exhibit some degree of heterogeneity, which can
be defined as the existence of different concrete
mechanisms for implementing the same abstract concept.
Heterogeneity has led to efforts to hide aspects of it from
users of these systems. These efforts have had two main
goals. First, allowing developers to create a single unifying
implementation of some functionality for heterogeneous
systems. Second, allowing heterogeneous systems to work

together or interoperate with each other.

This paper focuses on unifying and interoperating
collaboration capabilities that hide heterogeneity of user-
interface toolkits and associated domains such as
standalone and web applications. The unifying capabilities
would allow collaboration toolkits built on top of different
user-interface toolkits/domains to share some or all of their
code. The interoperation mechanism would allow
heterogeneous widgets, and ideally, also widget
compositions, to be synchronized with each other. The
unifying and interoperation goals can be met independently.
However, we consider both goals in this paper, because, as
we see below, a common set of concepts can be used to
address both of them.

A more intriguing goal is to create a cross fertilizing
heterogeneous toolkit. The requirement was first articulated
in the context of the work of Heering and Klint[1] to unify
command, programming, and debugging languages into a
single “monolingual environment”. As Heering and Klint
argue, even if it is not possible to develop a practical
unified system, the attempt to integrate systems in different
domains can lead to a cross fertilization in which crucial
features found in one domain are incorporated as useful
features in another domain.

In the rest of the paper, we expand on what it means to
achieve these three main goals, and describe a first-cut
system for realizing them

SCOPE
Before we can discuss our solution, we need to better
describe the problem and solution requirements. We begin
by explaining the terms user-interface toolkit, domain, and
collaboration.

Single-User Layers and Toolkits
In general, the I/O of a single user is processed by several
user-interface layers. A framebuffer treats the screen of the
user as a two dimensional array of pixels, allowing higher
layers to (a) access and manipulate these pixels, and (b)
intercept keyboard and mouse events. A window system
divides the screen into smaller regions, called windows,
allowing drawing of text and images in a window and
interception of window-specific events, such as typing and
mouse clicks in a window or resizing and movement of a
window. A user-interface toolkit is a layer above the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CSCW’12, February 11–15, 2012, Seattle, Washington, USA.
Copyright 2012 ACM 978-1-4503-1086-4/12/02...$10.00.

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1297

https://www.researchgate.net/publication/220404665_Towards_Monolingual_Programming_Environments?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==

window system that divides windows into finer-grained
abstractions such as text-boxes, sliders, and menus, and
allows interception of widget-specific events such as typing
and commitment of text in a text-box. A view is a layer
between the toolkit and the semantic component of an
application, called the model. The view composes widgets
into a user-interface, and keeps the model and user-
interface state consistent.

User-interface toolkits can create stand-alone or plug-in
widgets in some applications. We shall refer to each
environment in which widgets are created as a domain. Our
work is currently restricted to Java applications, and
addresses four popular Java toolkits: AWT, Swing, IBM’s
SWT, and Google’s GWT. Together, these define three
domains: the (desktop) stand-alone, (browser) web, and
Eclipse domains. AWT and Swing support both stand-alone
widgets and web-browser plug-in widgets in an applet.
SWT supports both stand-alone widgets and plug-in Eclipse
widgets. GWT supports plug-in (web) browser widgets by
converting Java to AJAX-based JavaScript We have not yet
fully targeted toolkits developed for mobile computers. We
have developed single-user support for the Android toolkit,
but not collaboration support, because certain Java features
on which our implementation currently depends are missing
in Android. However, the concepts described here should
work for mobile user-interface toolkits.

In all of these toolkits, the client and user-interface toolkit
layer run in the same process and hence host. Each toolkit
(a) supports calls to instantiate or change a widget and
associate a widget with observer or listener client objects,
and (b) each announces widget events to interested
listeners. All of them assume a single user views and
manipulates each widget. In the rest of the paper, we shall
assume this model of a single-user user-interface toolkit.

Collaboration Tools
A collaboration tool allows sharing of abstractions in one or
more user-interface layers. There are unique advantages and
disadvantages of sharing each layer [2]. In particular,
sharing the user-interface toolkit layer allows non
WYSIWIS (What You See is What I See) collaboration,
and does not require special abstractions designed for
collaboration. Sharing the framebuffer or window layer
forces near-WYSIWIS collaboration. Sharing higher layers
(a) does not allow sharing of toolkit events not intercepted
by the higher layers, such as scrolling and incremental
changes to a text field widget; and (b) constrains the
abstractions that can be used to create the view and/or
model. Thus, for each user-interface toolkit, it is important
to offer a collaboration tool that allows sharing of its
widgets.

A layer-independent collaboration tool offers general
synchronization mechanisms such as remote procedures and
shared objects [3, 4], which can be used by application
programmers to manually intercept and share events/calls of
one or more layers among different users. A layer-

dependent collaboration tool, on the other hand,
understands the events and calls of the layer on which it
depends, and provides automatic sharing of events/calls of
these layers, possibly using abstractions of a layer-
independent tool. By a collaboration toolkit, we mean a
layer-dependent collaboration tool that automatically shares
events/calls of one or more user-interface toolkits.

The applications supported by a collaboration toolkit are
collaboration-aware or collaboration-transparent based on
whether they are aware that they are being used by multiple
users. It is possible to support collaboration transparency at
all layers. NetMeeting and Suite [5] are examples of
desktop/window and model sharing systems, respectively,
that support collaboration-transparent applications. It is
also possible to transparently make individual single-user
applications collaborative without changing them – for
example, as shown in [6], Microsoft Word and PowerPoint.
Any tool that provides tailoring of collaboration
functionality supports collaboration-aware applications. As
we see below, the cross fertilization goal requires a small
amount of collaboration awareness in the application.
Therefore, rather than using the dichotomy of collaboration
awareness and transparency to evaluate the automation of
our tool, we use the “proportional effort” requirement given
below.

Requirements of Multi-Domain Collaboration Toolkit
As mentioned in the introduction, ideally a multi-domain
collaboration toolkit should support unification,
interoperability, and cross fertilization. Below, we refine
these abstract goals by outlining specific requirements such
a toolkit should meet.

Unification: It should offer a single set of mechanisms for
sharing widgets of each of the target user-interface toolkits
in each of the domains in which these toolkits can be used.
This requirement was personally motivated by a
collaboration system we have worked on for several
decades. We have had to continuously port it to the single-
user toolkit “most in fashion” at that time. In particular, we
have created versions of it for Motif, UIL, HTML, AWT,
and Swing. Each of these resulted in a different code base.
As it is was difficult to keep multiple code bases consistent,
only one of these toolkits was supported at one time. This
is not a problem if newer user-interface toolkits supersede
previous ones; however, this is not the case today. For
instance, there is no consensus today on whether AWT,
Swing or SWT should be used to create standalone user-
interfaces for a Java application. More important, as
mentioned above, different plug-in domains offer different
toolkits.

The problem of creating separate implementations of a
collaborative system for each popular user-interface toolkit
is not peculiar to our project. Consider an IM tool. Today
we see independent implementations of it in web user
interfaces (e.g. Gmail), in the Eclipse environment (e.g.
Jazz [7]), and, of course, on the desktop (e.g. Windows

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1298

https://www.researchgate.net/publication/234763240_Building_Real_Time_Groupware_with_GroupKit_A_Groupware_Toolkit?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220728538_Fiia_User-centered_development_of_adaptive_groupware_systems?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220286245_Coupling_the_User_Interfaces_of_a_Multiuser_Program?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220286301_Transparent_adaptation_of_single-user_applications_for_multi-user_real-time_collaboration?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/221321071_Jazzing_up_Eclipse_with_collaborative_tools?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==

Live Messenger) as a stand-alone tool. An even more
serious problem is that no collaboration toolkit has been
built so far for the relatively new SWT and GWT toolkits.
A single collaboration toolkit layered on top of Swing,
AWT, GWT and SWT, supporting all of the domains in
which these user-interface toolkits can operate, would solve
the above two problems.

Compatibility: Such a collaboration toolkit must bridge the
gap between both the target user-interface toolkits and
domains. One way to bridge the domain gaps is to use the
cross fertilization idea to make all domains equal from the
point of a collaboration toolkit. This approach has been
used in [8] to make web browsers directly communicate
events with each other, much as stand-alone replicas in
current collaboration toolkits do. However, it is not
practical to change web browsers, and more important,
violate web constraints. Therefore, we include the following
broader compatibility requirement: The collaboration
toolkit must follow domain constraints.

Cross fertilization: Cross fertilization to the web domain is
consistent with the general view that the web is a liability
for collaboration, though recent work has shown that this is
not the case in many situations[9, 10]. We go a step further
and suggest that it is, in fact, an asset, in that many aspects
of it should be included in other domains. In particular, in
all domains, it should be possible, as in web applications,
to:

(a) centralize communication through a central server, as
such communication provides more ordering
guarantees, which can be exploited in replica
consistency algorithms[11]; and does not require the
user computer to accept connection requests,
disallowed by certain firewalls. As centralized
communication adds network latency to remote
response times, it should be done only for those
widgets such as text for which such guarantees are
important.

(b) centralize computation in a central server, for several
reasons. Certain resources, such as some files and
databases, may not be available to stand-alone
applications on a user computer. In addition, the
computation may be expensive, and thus carried out
faster on a powerful server than a slow user computer.
Furthermore, certain computations such as file writes
and email sends are not idempotent, that is, yield the
same result regardless of how many replicas carry them
out. As centralized computation adds network latency
to response times, it should be done only when it is
essential or beneficial.

(c) use a generic program to join a session so that all users
in the session are not responsible for installing and
keeping up-to-date application-specific code, which
can be a heavyweight and error-prone task.

Begole et al[12] have shown that these are essential features
when application code runs in a web browser, and we argue
here that they are important convenience features in other
domains.

Interoperation: It should be possible to support real-time
collaboration among collaborators using different single-
user toolkits and domains. Increasingly, the same
application is being implemented in different domains (e.g.
Microsoft’s Word and Google Docs’s web version of it, and
the Google Map/Translate implementations on the web and
various mobile devices). In various scenarios (some of
which are given in [13, 14]), a group of collaborators may
wish, or be forced, to use different domains and associated
user-interface toolkits, and thus, have a need for such
interoperation.

Multiple widget-compositions: Often different domains
offer different widget-compositions for the same
application (e.g. Google translate) that make use of the
unique capabilities and constraints of the domain. However,
synchronizing different widget compositions seems
fundamentally at odds with collaboration toolkits. To
illustrate, consider the classic case of an integer value being
represented by a slider in one user-interface and a textbox
in another. Synchronizing two different widget types
directly requires a way to translate from one to another,
which in turn, implies that it is implemented in a layer
above the user-interface toolkit.

However, it is possible to use the following observation to
relax the requirement in current collaboration toolkits that
only identical widget-composition can be synchronized.
The widget compositions may differ, not because the same
abstraction is displayed by different types of widgets, but
because certain user-interfaces (a) contain optional widgets
not displayed in other interfaces, and/or (b) provide
different layouts and composition of common widgets.
Therefore, allowing collaboration among multiple (but not
arbitrary) widget compositions is another requirement.

Controlled retargeting: As collaborators may interact from
different domains, associated with different user-interface
toolkits, and may also have different preferences for the
user-interface toolkit, the programs run by them should be
able to control which user-interface toolkit is used to create
the user-interface. This requirement distinguishes our work
from a multi-platform user-interface toolkit, such as AWT,
which provides a logical layer that is targeted automatically
at multiple physical user-interface toolkits offered by
different platforms.

Proportional programming effort: The requirements above
imply several customization capabilities, which increase
programming overhead. This effort should be proportional
to the amount of customization desired by the application.
In particular, applications that wish the traditional
semantics supported by existing collaboration toolkits
should require no collaboration awareness.

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1299

https://www.researchgate.net/publication/2513718_GroupWeb_A_WWW_browser_as_real_time_groupware?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220879438_Real-Time_Groupware_in_the_Browser_Testing_the_Performance_of_Web-Based_Networking?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220879276_An_operational_transformation_based_synchronization_protocol_for_Web_20_applications?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/205976916_Flexible_collaboration_transparency_supporting_worker_independence_in_replicated_application-sharing_systems?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/221620752_Architectures_for_Widget-Level_Plasticity?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220959809_Designing_And_Developing_Multi-User_Multi-Device_Web_Interfaces?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==

No performance penalty: A collaboration toolkit meeting
these requirements and targeted at a particular user-
interface toolkit and domain should be able to offer the
same performance as one designed for that user-interface
toolkit and domain.

No superfluous constraint: The system must impose only
those constrains required by the domains. In particular, it
should not force two processes to (a) centralize a
computation, if the computation can be safely replicated,
and (b) centralize a communication, if it is possible for it to
be safely done directly.

TECHNICAL CONCEPTS
To explain how we address these requirements, we start
with an overview section describing the process
architecture, and then individually address some of the
components of the architecture.

To concretely understand the architecture and other
concepts, let us consider an application, inspired by Google
Translate, that allows English-speaking users to study
Chinese by viewing together the translations of a
collaboratively composed sequence of English words. It
comes with two user-interfaces (Figure 1), a small and a
large user-interface. The small user-interface presents, in a
single column, two text fields for displaying an English
phrase and its translation, and a button for performing the
translation. The large user-interface uses text areas instead
of text fields as the two text components, provides an extra
button to clear these widgets, and lays widgets in a matrix
rather than a column. The small user-interface has been
developed for the mobile and Eclipse domains, where
screen space is an issue, and the large one for other
domains. The two interfaces are implemented by the
classes, ASmallGUI and ALargeGUI, respectively.

Process Architecture
Like traditional collaboration toolkits, our system assumes
that a user in a collaborative session runs some local
process that joins the session and creates and manipulates
local widgets for that user. Corresponding widgets created
by different local processes in the same session are kept
consistent with each other. Therefore, like other
collaboration toolkits, we will refer to these processes as
(local) replicas, even though they are not required to run
the same code. Each replica has a module called a widget
server module, which is provided by our collaboration
toolkit. A widget server is like a window server in a
network window system, distributing the user-interface
toolkit rather than the window layer. This, it accepts remote
calls from a widget client to create and update widgets, and
sends widget events to the latter. The widget server module
can execute as part of (a) a generic session joiner, provided
by our toolkit, in which case it receives remote calls to both
create the initial user-interface and make updates to it in
response to remote actions, or (b) a program executing
application specific-code such as ASmallUI and ALargeUI,

in which case it receives calls only to update the user
interface in response to remote actions.

For each kind of user-interface, a separate piping replica
process is created, so named, because instead of making
calls in a single-user toolkit, it directs them to the session
server, which in turn forwards them to regular replicas to
remotely create and update their user-interfaces. Thus, in
this example, two piping replicas are created, for the small
and large interfaces, respectively. As we support the web
domain, we assume that each collaborative application is
installed on some web server. In addition, we assume that
existence of a session server, which (a) allows users of the
application to form one or more sessions, (b) creates piping
replicas for each session, (c) centralizes communication of
information among replicas, and (d) and stores session state
downloaded into latecomers.

All centralized processes must be located on well-known
hosts. In our implementation, they all run on the machine
hosting the web server. It is attractive to combine them all
in one central process to reduce the startup costs. A session
server and piping replica are separate because they execute
toolkit-defined and application-defined code, respectively.
A web server and other processes are separate because a
web server can execute external code only when a web
browser referencing that code connects to it; and we
support sessions in which no web browser is involved.

Let us continue with the example to illustrate and further
refine the architecture above. Assume that programmer
Alice has just finished creating the latest version of the
code. She installs it on a well known directory, translator,
at a web server, www.univ.edu, associated with this
application. In addition, she installs it as a plug-in in the
Eclipse environment.

To join a new session with the application, she starts a local
replica that makes the following call:
 VirtualToolkit.join(joinDescription, replicaId, false, false)
All four arguments are passed by the local call to the
remote session server. The two Boolean arguments indicate
that by default, the communication between widget replicas
is direct and the listeners of the widgets are replicated.
“replicaId” is an optional argument, and is used by the local
replica to register with the session server an address that
can be used by other replicas to communicate with it
directly. The join description consists of three parts: a web
server address, and an application, session, and UI
description, as shown below:

www.cs.univ.edu/~translator/?session=test1&kind=small

Here ~translator, session=test1 and kind=small are the
application, session, and UI descriptions, respectively. The
UI description is passed to the session server so that it can
connect it to the appropriate piping replica. In response to
(a) the first join request, the session server

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1300

 Figure 1 User Interfaces and Physical Process Architecture in Example Session Figure 2 Logical Call/Event Flow

creates a new object to represent the session; and (b) all
join requests, the requesters are added to the session object,
and the replica address of the joiner, if provided, is sent to
existing session members with registered replica addresses.

On the creation of a new session, the session server also
starts the two piping replicas for the two user interfaces. A
piping replica for a particular kind of user-interface
executes the same code as a corresponding user replica,
creating the same user-interface, and also has a replica
address to communicate with the session server. A
configuration file specifies the program(s) that the piping
replicas run, runtime arguments to the program(s), and the
widgets whose listeners they centralize. In our example, it
states that for all widgets, the centralized listeners are
located in the piping replica created for the large interface.

Alice next asks Bob, Cathy, and David to join her in testing
the new version, communicating the session URL to them.
David is on the file system referenced by the web server, so
he simply runs the installed code on his machine to create a
replica, binding it to AWT and the large interface. The
other users are on separate file servers and have not
installed the software. This is not a problem for Bob, who
interacts through the web browser, which uses the web
protocol to download code compiled into JavaScript by
GWT, and binds it to the large interface. Cathy creates a
stand-alone user-interface, and is also able to use a generic
application, the generic session joiner mentioned above,
and binds it to Swing and the small interface. David is
behind a firewall that prevents incoming connections, so he
does not provide a replica address when joining the session.
As Bob uses a web browser, he too does not provide such
an address. The other two users, not behind firewalls,
provide such addresses, which are used to connect them to
each other and the two piping replicas. Figure 1 shows the
user interfaces and process architecture created for the
resulting session, in which multiple users, single-user
toolkits, widget compositions, and domains are involved.
The dashed lines indicate connections among replicas. Such
connections are not shown for the piping replica for the
large interface to avoid further cluttering the figure. David
and Bob’s replicas have no such connections as they have
not registered replica addresses.

Factory-based Retargeting
A collaboration toolkit supporting both replication and
centralization of widget listeners must trap and distribute
events and calls of the underlying user-interface toolkit.
Like several previous works, we have developed an abstract
user-interface toolkit layer that is mapped to multiple target
user-interface toolkits, which allows us to meet the
unification requirement by implementing the
trapping/distribution support in this layer. There have been
two main approaches for such abstraction.

One approach is to create a declarative re-targetable user-
interface tool such as an XML-based system [15]. However,
this approach fundamentally changes the way developers
program, thereby also restricting the set of supported user-
interfaces. For instance, it does not allow a program to
dynamically add widgets in response to user input.

Another approach is to create a procedural abstract layer
and require the programmer to use appropriate subclasses
of it to choose the appropriate concrete implementation.
This approach has been used in WAHID[13] to map
abstract scrollbars and menus to different concrete
implementations of them in a stand-alone application and a
sketching tool. In a single-inheritance language, the class
inheritance approach works only when the target widgets
are not related by an inheritance hierarchy, as in the case of
the scrollbar and menu widgets. For example, it cannot
support a container widget that is a subclass of a component
widget, as the former would have to now be a subclass of an
abstract container class. Therefore, we have developed an
alternate solution based on using (programming) interfaces,
and two interface-based design patterns: a) factories [16],
that is, objects that create other objects, and (b) abstract
factories[16], that is, objects that select among different
factories.

We have created an abstract widget interface hierarchy
based on the class hierarchy of Swing widget classes. For
instance, we have created interfaces, VirtualContainer and
VirtualComponent, which declare the public methods of
Component and Container, respectively; and made
VirtualContainer a subtype of VirtualComponent. For each
target toolkit, we have created proxy toolkit classes that
delegate to corresponding classes of the toolkit. For

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1301

https://www.researchgate.net/publication/221620752_Architectures_for_Widget-Level_Plasticity?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/221555930_Multi-platform_user_interface_construction-a_challenge_for_software_engineering-in-the-small?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/239643907_Design_Patterns_Elements_of_Object-Oriented_Software_Architecture?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/239643907_Design_Patterns_Elements_of_Object-Oriented_Software_Architecture?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==

instance, we have created the proxy toolkit classes
SwingContainer and SWTContainer to provide the Swing
and SWT implementations, respectively, of the
VirtualContainer interface.

Competing toolkit-specific factories are created for
different versions of toolkit abstractions in different target
toolkits, and are assigned to abstract factory classes, which
are used, via static methods, to instantiate toolkit
abstractions. For instance, in our example, the following
call is used to instantiate the translate button:
 ButtonSelector.createButton("translate")
It invokes the static method. createButton() on the abstract
factory, ButtonSelector, which returns an instance of the
abstract interface VirtualButton.

Abstract factories are initialized by functions that choose
the toolkit, which in turn results in them being assigned the
concrete factories of the chosen toolkit. For instance, if the
Swing toolkit is chosen, then the abstract factory,
ButtonSelector, is assigned an instance of the factory,
SwingButtonFactory. Thus, the call given above asks the
instance of SwingButtonFactory to create a button, which,
in turn, returns an instance of the proxy class SwingButton.
An operation such as addActionListener() or setName() on
the proxy class (SwingButton) delegates to the
corresponding operation provided by the target toolkit class
(JButton). The proxy toolkit classes not only delegate to
target toolkit classes, but also, as we see below, distribute
toolkit events among collaborators and interpose toolkit-
provided proxy listeners between widgets and their
application-defined centralized listeners (Figure 3).

Requiring developers to type toolkit abstractions using
interfaces and instantiate them using factories is arguably
good programming practice, yet none of our target Java
target toolkits define a factory or even an interface for any
widget. We might have also ignored them in our API had
they not offered a way to support controlled retargeting, a
side effect of which is the ability to create better designed
programs, consistent with the argument of Heering and
Klint that the exercise of trying to unify a set of computer
systems can result in enhancement of individual members of
the set. To allow developers to use familiar APIs, we have
built adapters that translate calls of an existing user-
interface toolkit to our abstract toolkit-independent top
layer (Figure 3). To use them, developers must change the
name of the top-level package in their imports of
classes/interfaces provided by the existing toolkit.

Not all of our target toolkits support the same set of
abstractions. How one translates between heterogeneous
toolkit abstractions is an issue that modern multi-platform
toolkits [15] have addressed and is, thus, beyond the scope
of our research. In our current implementation, if a target
toolkit does not support the equivalent of a supported
abstraction or operation, we simply return a null object or
do nothing when the abstraction is instantiated and the
operation is invoked, respectively. If an application uses

some functionality that is common to a subset of the target
user-interface toolkits, then our implementation is able to
bind it to all of these toolkits without loss of functionality.
An important implication of this guarantee is that existing
programs bound to some target toolkit would suffer no loss
of functionality when they are ported to our abstract layer
and then targeted back at the original toolkit. A more robust
system would implement missing functionality.

Our factory-based approach allows toolkit API calls to be
redirected to another process rather than a target toolkit. To
do such redirection, the redirector must set the target “user-
interface toolkit” to an address that represents the remote
process. In response, the call sets the abstract factories to
factories rather than toolkit-specific factories. These
factories return, not toolkit proxy objects, but forwarder
objects, which forward calls to the target process (and store
local un-displayed state). This feature is used by the piping
replicas to forward calls to the session server. Thus, when
the translator program is run by a piping replica,
ButtonSelector.createButton() returns an instance of
ForwarderButton, which forwards setActionListener() and
other calls to the session server.

In summary, we support a three layered approach for
abstracting the user-interface toolkit. The top layer defines
widget interfaces, factory interfaces, and abstract factory
classes, which define the API used by the programmer. The
second layer provides, for each target user-interface toolkit
and the forwarder “user-interface toolkit,” implementations
of the factory and widget interfaces defined by the topmost
layer. This layer references instances of the actual classes of
the target toolkits.

 Figure 3 Layers and Modules Processing Calls/Events

Widget Servers and Piping Replica Clients
Systems such as X[17] and NeWS[18] have shown the
usefulness and possibility of distributing the window layer.
An interactive computer runs a special local process, called
a window server, which manages the windows on that
computer, and accepts connections from multiple, possibly
remote, processes, called window clients. A window client
can ask a window server to create windows on the computer
it manages, and is sent user events associated with these
windows. This is called the inverted server architecture as
the local machine hosts a server, and remote machines the
clients.

As mentioned above, we distribute the user-interface toolkit
layer, which seems like a simple variation of the idea of
distributing the window layer, where the main difference is
in the types of the objects on the user’s computer and the

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1302

https://www.researchgate.net/publication/221555930_Multi-platform_user_interface_construction-a_challenge_for_software_engineering-in-the-small?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/242414052_SunDew_-_A_Distributed_and_Extensible_Window_System?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==

events that are fired by these objects. Using the window
system inverted server terminology, we will use the terms
widget server and widget client to refer to a module that
serves and issues, respectively, remote requests to create
and manipulate toolkit abstractions. As in the case of a
window system, the widget server runs in a process on the
user’s computer, while a widget client is a remote process.

However, there are some subtle related differences between
the motivations for and nature of the distribution of the
window and toolkit layers. One difference has to do with
the number of user-interface servers on a user’s computer.
A window system running on a user’s computer provides a
single process serving all possible window clients that wish
to create windows on that computer. Our approach, on the
other hand, creates a separate widget server process on a
computer for each remote widget client process that creates
(synchronized) widgets on that computer.

 In a network window system, the single window server is
guaranteed to be up before any of its window clients starts,
and allows connections to be made to it by clients.
Moreover, a client can be on an arbitrary host, and pushes
requests to a server. In our context, a piping replica is a
client. It is located on a well known host, and is started
when a session is created. The server is typically started
after this client, when its user joins the session.
Furthermore, to respect firewall restrictions, it is not
guaranteed to allow inward connections. Therefore, we
interpose a central process, the session server, between the
server and the piping replicas, which accepts connections
from both. The calls of the piping replicas are piped to the
session server instead of a target toolkit, which stores them.
Later, when a widget server joins a session, it pulls these
calls. Any subsequent call made by the piping client is
immediately sent to the widget server, again through the
session server.

Remote window systems differ on where event processing
code is executed. X [17] requires events to be passed back
to the window client that made the API calls, while NeWS
[18] allows the client to download some event-processing
code, written in a special language, into the window system.
Our user-interface toolkit model requires us to support
listener-based event handling, which means deciding where
event processing is done reduces to locating the listeners,
discussed next.

Flexible Listener Placement
Like traditional single-user toolkits, we allow a widget to be
bound to a local listener. In addition, we allow it to be
bound to a central listener in a piping replica, as shown in
the call below:
 translate.setCentralizedComputation(true);
which centralizes the listener for the translate button, as it
accesses a database located only on the central host.

How the widget-listener binding is done depends not only
on the listener location but also on whether a user-interface

is created in response to requests issued by a local
application replica or a central piping replica. Thus, we
have four cases: (1) local replica, local listener; (2) local
replica, central listener; (3) piping replica, central listener;
(4) piping replica, local listener. The first case is the
traditional approach, and can be supported directly by
associating the listener with the target toolkit widget. In the
other cases, the widgets and listeners are in different
address spaces, and in the last two cases, the binding is
being made in one process, the widget server, by another
process, the piping replica.

Consider case (2). When the local replica makes the call to
bind a widget to a local (application-defined) listener, the
proxy class that intercepts this call binds the widget to a
toolkit-defined proxy listener, which forwards received
events to the piping replica that hosts the central listener for
that widget (Figure 3). Case (3) is similar except that the
call to bind the widget to the central listener is invoked by
the remote piping replica, through the session manager.
This call does not send a listener object to the replica.
Instead, it sends a directive to bind the widget to the toolkit-
defined proxy listener.

Case (4) is the most difficult, as a listener must be created
in the local replica in response to a request from a remote
process. One approach, which we support, is to make the
requesting process instantiate the listener and send a copy
to the widget server. However, the listener may have
location-specific references and thus, in Java’s terminology,
not be serializable. Moreover, this approach does not allow
listeners for different widgets to share objects, as copies
rather than references of objects are shared. Therefore, our
collaboration toolkit allows the application to bind a
widget, not only to a listener, but also a factory that returns
a listener. The toolkit uses the factory to obtain the real
listener. When a piping replica makes such a binding call, it
sends a copy of a factory rather than that of a listener. The
widget server uses this copy to obtain the listener. The
factory can construct the listener locally and, optionally,
bind it to parts of listeners constructed by previously sent
factories. This approach is illustrated in the following code,
where the translate button is associated with a listener
factory:
translate.addActionListener(new ATranslateListenerFactory(from,
to).createActionListener());

Here, “from” and “to” are the text components containing
the original and translated text, respectively. A factory can
be expected to be serializable as its job is relatively simple.
As we see from the call above, a factory or listener may
have references to widgets, which are not normally
serializable. We define special “serialization” procedures
for them that send their global ids, which are de-serialized
by mapping them to the corresponding widgets installed in
the local process.

Case (4) requires the widget server to access application-
defined (listener/factory) classes. If the underlying RPC

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1303

https://www.researchgate.net/publication/242414052_SunDew_-_A_Distributed_and_Extensible_Window_System?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==

system allows classes of objects to be sent along with
objects, then this is not an issue. However, the ones we use
in our implementation – GWT RPC for communication
between web clients and servers and RMI for all other
communication - do not currently include this capability.
This is not a problem in the GWT case as it allows client-
side classes to be specified at the web server, which are
automatically compiled and downloaded in the browser. In
the RMI case, we use a network loader to obtain such a
class, if such an operation does not cause access violations,
and centralize the listener otherwise. Creating application-
defined factories increases program burden, and
dynamically sending them and loading their classes over the
network increases the time required to create a user-
interface. These problems are consistent with extensible
network window systems such as NeWS, which allow only
certain kinds of code to be executed in the window system,
and incur the cost of creating and sending event handlers.

A widget event can go to a local listener (case 1 and 4)
without the need for an intermediary. Yet, even in these
cases, we interpose a proxy between the two, which
forwards events to the local listener, and also implements
widget synchronization, discussed below.

Synchronization
One challenge in automatically synchronizing different
widget composition is determining the correspondence
between widgets in these compositions. The traditional
approach is to assume that identical widget compositions
are created by identical replicated code, and use the order in
which widgets are created to determine the correspondence.
We use a more general approach in which the creation
order is used by default, unless the programmer explicitly
names the widgets, in which case the name is used to
resolve the correspondence. The standard Swing setName()
method is also provided by our toolkit to name the widgets:
 translate.setName("translate")

Unlike the Swing toolkit, our synchronization approach
requires the name of a widget to be unique.

A toolkit such as ours that supports replication and
centralization must support the following synchronization
invariants. (a) An event sent to a listener in one process
must also be sent to all corresponding replicated listeners in
other processes. For instance, in our example, when the user
presses the clear button, the event should be sent to all
replicated listeners of the widget. (b) A state-changing API
call made by a centralized listener must be invoked on all
widget servers in the user replicas. Thus, in our example,
when the listener in the large UI piping replica sets the text
of the “to” widget, the call should be forwarded to all user
replicas. (c) Corresponding local toolkit calls made by
listeners in different replicas must return the same value.
For instance, when the translate button is pressed, the
replicated listeners in different replicas must see the same
state in the “from” and “to” text widgets.

We support three coupling modes that offer these
invariants. In all of these modes, each change to a widget
causes the widget and event to be stored in a global buffer.
The buffer is sent to all remote (piping and user) replicas
whenever a proxy listener (Figure 3) forwards an event to
an application-defined listener. In the
default/action/incremental coupling mode, no other
event/action events/all events cause buffer transmission. We
have included these coupling modes to show the range of
existing coupling modes [5] that can be supported in our
collaboration toolkit. They subsume those offered by
current collaboration toolkits, and thus help meet the no
superfluous constraint requirement.

On receiving an input event, an interactive replica makes an
equivalent call to update the local widget, and also forwards
it to local listeners of the event. Thus, when a user edits the
“from” text component, the resulting input event, when
transmitted to another interactive replica, causes the
corresponding local “from” component to be updated with
the edited value. The calls made by a centralized listener
are sent to all interactive replicas. A replica ignores an
event or call referencing a widget that does not exist in its
user interface.

Synchronization events and calls are sent to the session
manager by the piping replicas through the forwarder user-
interface toolkit (Figure 3). These are buffered in the
session object in the session manager for replicas that join
the session late. While compression techniques [19] can be
applied to them, we have not so far provided them in our
implementation. Buffered actions are separated into the
initial calls for creating the user interface, which are
forwarded to generic session joiners, and the subsequent
actions, which are forwarded to all replicas. The initial calls
received from different piping replicas are kept in separate
buffers as these replicas create different user interfaces. All
subsequent events and listener calls are kept in a single
global buffer. All calls made before the first
synchronization input event is received are considered
initial calls. A piping replica generates no input events but
receives all synchronization events. The synchronization
events received by only one of these replicas are stored in
the global buffer. Moreover, a call made by a listener in a
piping replica in response to a synchronization event is
stored in the global buffer only if the (a) the listener is
centralized, determined by the API call given earlier, and
(b) the replica is responsible for centralizing it, determined
by the configuration file, also mentioned earlier.

Figure 2 illustrates and summarizes the logical flow of
events and API calls among the interactive and piping
replicas. As Cathy joins the session with a generic session
joiner, the piping replica for the small user interface sends it
calls to create the interface. David’s replica does not
receive such calls from the piping replica to create the large
interface, as he joins the session with a custom replica that
makes local calls to create it. As the listener for the translate

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1304

https://www.researchgate.net/publication/220286245_Coupling_the_User_Interfaces_of_a_Multiuser_Program?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/2512781_Generic_and_Composable_Latecomer_Accommodation_Service_for_Centralized_Shared_Systems?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==

button is centralized in the large piping replica, the calls
issued by the listener to update the “to” widget are sent to
all other (user and piping) replicas. Finally, each user
replica sends input to all other replicas.

This logical flow does not reflect the physical flow of
messages discussed in earlier sections, which may involve
the session manager. It is involved in delivery of (a) all
communication to interactive replicas such as David’s that
have not registered addresses, (b) all calls made by piping
replicas, and (c) all latecomer input events.

DISCUSSION
Our abstraction of the target user-interface toolkits and
implementation of the sharing mechanisms in terms of this
abstraction allows us to meet the unification requirement.

By allowing communication to be centralized in the session
server, and some listeners to run on a central machine, we
ensure that constraints of our target domains are not
violated, thereby meeting the compatibility requirement.
Moreover, by allowing processes that can do so to execute
listeners locally and communicate directly with each other,
we meet the no superfluous constraint requirement. By
allowing generic programs to be used to join collaborative
sessions and allowing programmers to determine if
computation/communication is centralized or replicated
allows us to meet the cross fertilization requirements. By
allowing programs to also choose the target user-interface
toolkit, we meet the controlled retargeting requirement.

By allowing synchronization among heterogeneous
compositions of widgets of different target toolkits, we
meet the requirements of interoperation and multiple
widget-compositions. Modulo a few extra levels of
indirection (proxy widgets and listeners), we support the
existing functionality and communication and computation
architectures of these toolkits. Our preliminary performance
measurements show, not surprisingly, that these indirection
levels cause un-measurable changes to the performance.
Thus, we meet the performance requirement.

The functionality unique to our collaboration toolkit is
optional. Defining a configuration file, listener factories and
overriding of the communication, centralization, and
coupling modes is necessary only if the semantics supported
by traditional stand-alone collaboration toolkits, which are
replicated, is unacceptable. Thus, arguably, we meet the
proportional effort requirement.

Dynamic binding of an application program to a concrete
user-interface – also called plasticity [20] - is the goal of
several collaborative and non collaborative systems. As
mentioned earlier, a particularly relevant example of a
procedural system supporting this idea is WAHID [13].
However, it is not a collaboration toolkit, and thus does not
meet any of our other requirements. There are numerous
examples of previous collaboration toolkits such as [3, 8,
12]. However none of these supports heterogeneous
domains or user-interface toolkits.

Several other forms of collaboration tools meet one or more
of our requirements. Like us, Cooperative Teresa [14]
allows synchronization of heterogeneous widget
compositions. However, it is targeted only at the web
domain. More important, it shares the view rather than the
user-interface toolkit layer. As mentioned before, a higher-
level tool such as this one supports a non standard and
restrictive programming paradigm, and does not allow
certain useful coupling modes that can be implemented only
in a collaboration toolkit. Some model-based [4] or layer-
independent[21] tools support multiple communication
and/or computation architectures. One difference between
these systems and ours is that the former assume all
computation can be safely replicated, and support multiple
architectures only for performance.

As mentioned before, sharing of each layer provides a
unique set of advantages and disadvantages. For instance,
as also mentioned before, sharing of a layer higher than the
user-interface toolkit allows more divergence in the
synchronized widget compositions, and also, in view-
sharing systems such as Cooperative Teresa, allows
automatic generation of these compositions. Thus, our
system has several disadvantages that collaboration toolkits
suffer in general. As mentioned before, the unique
advantages and disadvantages of sharing each layer are
discussed in depth in [2].

In summary, no other system meets all of the requirements
our toolkit was designed to meet. More strongly, none of
them supports: a generic session-joining program in
domains other than the web, programmer-controlled
retargeting of an entire user-interface toolkit, widget-
grained control over whether communication and
computation is centralized, and no superfluous constraints.

Novel Mechanism Supported Requirements

Factory-based retargeting Unification, controlled targeting

Widget server Generic session joining tool,
listener centralization, latecomer

Synchronization modes No extraneous constraints

Flexible listener placement Widget-grained computation
centralization/replication, no
extraneous constraints

Piping replicas Computation centralization,
Generic session joining tool,
Hetero. widget compositions

Process architecture All requirements

Table 1 Novel Mechanisms vs. Requirements

The novelty of a system must be judged not only by the
requirements it meets but also the mechanisms it offers.
Table 1 identifies the major novel mechanisms and the
collaboration requirements they support. Some of these
mechanisms have applications beyond collaboration.
Factory-based retargeting can be used to create plastic

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1305

https://www.researchgate.net/publication/234763240_Building_Real_Time_Groupware_with_GroupKit_A_Groupware_Toolkit?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220728538_Fiia_User-centered_development_of_adaptive_groupware_systems?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/2513718_GroupWeb_A_WWW_browser_as_real_time_groupware?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/205976916_Flexible_collaboration_transparency_supporting_worker_independence_in_replicated_application-sharing_systems?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/221620752_Architectures_for_Widget-Level_Plasticity?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220959809_Designing_And_Developing_Multi-User_Multi-Device_Web_Interfaces?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/222218921_A_Unifying_Reference_Framework_for_Multi-Target_User_Interfaces?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220879158_Towards_dynamic_collaboration_architectures?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==

single-user interfaces, and piping replicas could be used for
monitoring user-interface activity.

Perhaps more important than the novel aspects of our
collaboration toolkit are the requirements themselves,
which, for the first time, define what it means to support a
collaboration toolkit that can be targeted at multiple
domains and associated user-interface toolkits. In
particular, they show that web features can be an asset
rather than a liability in collaboration toolkits.

Experience with our system is necessary to refine our
requirements and identify alternative mechanisms to meet
them. It would be useful to identify: (a) other uses of some
our mechanisms, (b) support for multi-language user-
interface toolkits, (c) how collaboration functions other than
widget synchronization, such as concurrency control,
operation transformation, awareness, and collaborative
undo can be added to our mechanisms, (d) practical ways to
attach our adapters to existing code, without any
modification to it, and (e) adapt our requirements and
mechanisms to higher-level collaboration tools exhibiting
heterogeneity.

ACKNOWLEDGEMENTS
This research was funded in part by NSF grants IIS
0712794 and IIS-0810861.

REFERENCES
1. Heering, J. and P. Klint, Towards Monolingual

Programming Environments. ACM Transactions on
Programming Languages and Systems, April 1985.
7(2).

2. Dewan, P., Architectures for Collaborative
Applications. Trends in Software: Computer Supported
Co-operative Work, 1998. 7: p. 165-194.

3. Roseman, M. and S. Greenberg, Building Real-Time
Groupware with GroupKit, A Groupware Toolkit.
ACM Transactions on Computer-Human Interaction,
1996. 3(1).

4. Wolfe, C., T.C.N. Graham, W.G. Phillips, and B. Roy.
Fiia: User-Centered Development of Adaptive
Groupware Systems. in ACM EICS. 2009.

5. Dewan, P. and R. Choudhary, Coupling the User
Interfaces of a Multiuser Program. ACM Transactions
on Computer Human Interaction, March 1995. 2(1).

6. Sun, C., S. Xia, D. Sun, D. Chen, H. Shen, and W. Cai,
Transparent adaptation of single-user applications for
multi-user real-time collaboration. ACM Transactions
on Computer Human Interaction, 2006. 13(4).

7. Cheng, L.-T., S. Hupfer, S. Ross, and J. Patterson.
Jazzing up Eclipse with collaborative tools. in
Proceedings of the OOPSLA workshop on eclipse
technology eXchange. 2003.

8. Greenberg, S. and M. Roseman. GroupWeb: A WWW
Browser as Real Time Groupware. in Proc. CHI. 1996:
ACM.

9. Gutwin, C., M. Lippold, and N. Graham. Real-Time
Groupware in the Browser: Testing the Performance
of Web-Based Networking. in Proc. CSCW. 2011:
ACM.

10. Shao, B., D. Li, T. Lu, and N. Gu. An operational
transformation based synchronization protocol for
Web 2.0 applications. in Proc. CSCW. 2011.

11. Nichols, D., P. Curtis, M. Dixon, and J. Lamping.
High-Latency, Low-Bandwidth Windowing in the
Jupiter Collaboration System. in UIST. 1995.

12. Begole, J., Rosson, M., and Shaffer, C. Flexible
collaboration transparency: supporting worker
independence in replicated application-sharing
systems. in ACM Transactions on Computer Human
Interaction, 1999. 6(2).

13. Jabarin, B. and N. Graham. Architectures for Widget-
Level Plasticity. in Proc. DSV-IS. 2003.

14. Paternò, F. and I. Santos. Designing and Developing
Multi-User, Multi-Device Web Interfaces. in Proc.
CADU. 2006: Springer.

15. Bishop, J. Multi-platform User Interface Construction
– a Challenge for Software Engineering-in-the-Small.
in Proc. ICSE. 2006.

16. Gamma, E., R. Helm, R. Johnson, and J. Vlissedes,
Design Patterns, Elements of Object-Oriented
Software, Reading, MA.: Addison Wesley, 1995.

17. Scheifler, R.W. and J. Gettys, The X Window System.
ACM Transactions on Graphics, Aug. 1983. 16(8).

18. Gosling, J. "SunDew?: a distributed and extensible
window system. in Proceedings of an Alvey Workshop
on Methodology of window management,. 1986.

19. Chung, G., P. Dewan, and S. Rajaram. Generic and
composable latecomer accommodation service for
centralized shared systems in Proc. IFIP Conference
on Engineering for Human Computer Interaction,
Chatty and Dewan, editors. 1998: Kluwer Academic
Publishers.

20. Calvary, G., J. Coutaz, David Thevenin, Q. Limbourg,
L. Bouillon, and J. Vanderdonckt, A unifying reference
framework for multi-target user interfaces. Interacting
with Computers, 2003. 15(3).

21. Chung, G. and P. Dewan. Towards dynamic
collaboration architectures. in Proc. ACM CSCW.
2004.

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1306

https://www.researchgate.net/publication/220404665_Towards_Monolingual_Programming_Environments?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220404665_Towards_Monolingual_Programming_Environments?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220404665_Towards_Monolingual_Programming_Environments?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220404665_Towards_Monolingual_Programming_Environments?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/234763240_Building_Real_Time_Groupware_with_GroupKit_A_Groupware_Toolkit?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/234763240_Building_Real_Time_Groupware_with_GroupKit_A_Groupware_Toolkit?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/234763240_Building_Real_Time_Groupware_with_GroupKit_A_Groupware_Toolkit?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/234763240_Building_Real_Time_Groupware_with_GroupKit_A_Groupware_Toolkit?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220728538_Fiia_User-centered_development_of_adaptive_groupware_systems?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220728538_Fiia_User-centered_development_of_adaptive_groupware_systems?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220728538_Fiia_User-centered_development_of_adaptive_groupware_systems?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220286245_Coupling_the_User_Interfaces_of_a_Multiuser_Program?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220286245_Coupling_the_User_Interfaces_of_a_Multiuser_Program?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220286245_Coupling_the_User_Interfaces_of_a_Multiuser_Program?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220286301_Transparent_adaptation_of_single-user_applications_for_multi-user_real-time_collaboration?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220286301_Transparent_adaptation_of_single-user_applications_for_multi-user_real-time_collaboration?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220286301_Transparent_adaptation_of_single-user_applications_for_multi-user_real-time_collaboration?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220286301_Transparent_adaptation_of_single-user_applications_for_multi-user_real-time_collaboration?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/221321071_Jazzing_up_Eclipse_with_collaborative_tools?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/221321071_Jazzing_up_Eclipse_with_collaborative_tools?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/221321071_Jazzing_up_Eclipse_with_collaborative_tools?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/221321071_Jazzing_up_Eclipse_with_collaborative_tools?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/2513718_GroupWeb_A_WWW_browser_as_real_time_groupware?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/2513718_GroupWeb_A_WWW_browser_as_real_time_groupware?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/2513718_GroupWeb_A_WWW_browser_as_real_time_groupware?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220879438_Real-Time_Groupware_in_the_Browser_Testing_the_Performance_of_Web-Based_Networking?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220879438_Real-Time_Groupware_in_the_Browser_Testing_the_Performance_of_Web-Based_Networking?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220879438_Real-Time_Groupware_in_the_Browser_Testing_the_Performance_of_Web-Based_Networking?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220879438_Real-Time_Groupware_in_the_Browser_Testing_the_Performance_of_Web-Based_Networking?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220879276_An_operational_transformation_based_synchronization_protocol_for_Web_20_applications?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220879276_An_operational_transformation_based_synchronization_protocol_for_Web_20_applications?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220879276_An_operational_transformation_based_synchronization_protocol_for_Web_20_applications?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/205976916_Flexible_collaboration_transparency_supporting_worker_independence_in_replicated_application-sharing_systems?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/205976916_Flexible_collaboration_transparency_supporting_worker_independence_in_replicated_application-sharing_systems?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/205976916_Flexible_collaboration_transparency_supporting_worker_independence_in_replicated_application-sharing_systems?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/205976916_Flexible_collaboration_transparency_supporting_worker_independence_in_replicated_application-sharing_systems?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/205976916_Flexible_collaboration_transparency_supporting_worker_independence_in_replicated_application-sharing_systems?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/221620752_Architectures_for_Widget-Level_Plasticity?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/221620752_Architectures_for_Widget-Level_Plasticity?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220959809_Designing_And_Developing_Multi-User_Multi-Device_Web_Interfaces?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220959809_Designing_And_Developing_Multi-User_Multi-Device_Web_Interfaces?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220959809_Designing_And_Developing_Multi-User_Multi-Device_Web_Interfaces?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/221555930_Multi-platform_user_interface_construction-a_challenge_for_software_engineering-in-the-small?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/221555930_Multi-platform_user_interface_construction-a_challenge_for_software_engineering-in-the-small?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/221555930_Multi-platform_user_interface_construction-a_challenge_for_software_engineering-in-the-small?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/242414052_SunDew_-_A_Distributed_and_Extensible_Window_System?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/242414052_SunDew_-_A_Distributed_and_Extensible_Window_System?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/242414052_SunDew_-_A_Distributed_and_Extensible_Window_System?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/2512781_Generic_and_Composable_Latecomer_Accommodation_Service_for_Centralized_Shared_Systems?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/2512781_Generic_and_Composable_Latecomer_Accommodation_Service_for_Centralized_Shared_Systems?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/2512781_Generic_and_Composable_Latecomer_Accommodation_Service_for_Centralized_Shared_Systems?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/2512781_Generic_and_Composable_Latecomer_Accommodation_Service_for_Centralized_Shared_Systems?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/2512781_Generic_and_Composable_Latecomer_Accommodation_Service_for_Centralized_Shared_Systems?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/2512781_Generic_and_Composable_Latecomer_Accommodation_Service_for_Centralized_Shared_Systems?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/222218921_A_Unifying_Reference_Framework_for_Multi-Target_User_Interfaces?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/222218921_A_Unifying_Reference_Framework_for_Multi-Target_User_Interfaces?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/222218921_A_Unifying_Reference_Framework_for_Multi-Target_User_Interfaces?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/222218921_A_Unifying_Reference_Framework_for_Multi-Target_User_Interfaces?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220879158_Towards_dynamic_collaboration_architectures?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220879158_Towards_dynamic_collaboration_architectures?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/220879158_Towards_dynamic_collaboration_architectures?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/239643907_Design_Patterns_Elements_of_Object-Oriented_Software_Architecture?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/239643907_Design_Patterns_Elements_of_Object-Oriented_Software_Architecture?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==
https://www.researchgate.net/publication/239643907_Design_Patterns_Elements_of_Object-Oriented_Software_Architecture?el=1_x_8&enrichId=rgreq-fb160b58eb176814353e2221dc321d48-XXX&enrichSource=Y292ZXJQYWdlOzIyMDg3ODkzNjtBUzoxNDEwMDUwMzg4MjEzNzZAMTQxMDYyOTYyOTU3MA==

