
Towards Hierarchical Email Recipient Prediction

Jacob Bartel

Department of Computer Science

University of North Carolina

Chapel Hill, NC, USA

bartel@cs.unc.edu

Prasun Dewan

Department of Computer Science

University of North Carolina

Chapel Hill, NC, USA

dewan@cs.unc.edu

Abstract—Previous email prediction algorithms generate

individual predictions based on the past groupings of recipients

or the contents of past emails. Our work builds on this research

by (a) introducing new algorithms for extending and combining

previous techniques and generating hierarchical recipient

predictions and (b) comparing the previous algorithms with each

other and the new algorithms. We used standard metrics and

developed new metrics to measure three kinds of user effort:

scanning predictions, selecting predictions, and manually

entering recipients. The new metrics are based on a new abstract

model of recipient prediction that applies to existing schemes and

the new ones developed by us. Our evaluations, based on the

Enron mail database and the Gmail user-interface for recipient

prediction, show that (a) content is less effective than groups, (b)

the combination of content and groups is less effective than

groups alone, and (c) hierarchical recipient prediction reduces

user effort.

Keywords- recommender systems; email; privacy

I. INTRODUCTION

A number of GUIs require the entry of text, which can
typically be broken up into tokens – string sequences
delimited by whitespace and special separator characters. To
aid the entry of such text, some of these interfaces provide
token completion and prediction, illustrated in Figure 1. Token
completion recommends a set of choices that complete the
current token based on the prefix entered by the user. In
Figures 1(a) and (b), the Gmail and Eclipse user-interfaces
provide lists of recommendations based on the token prefixes
‘nav’ and ‘a’, respectively. Token prediction, on the other
hand, recommends one or more future tokens based on the
tokens entered so far. In Figure 1(c) and (d), the Gmail and
Eclipse user-interfaces recommend tokens which represent
additional recipients to whom a message should be addressed
and alternative valid method calls, respectively.

In this paper, we consider a special case of token
prediction illustrated in Figure 1(c): prediction of email
recipients. Recipient prediction has several potential
advantages. It saves the user effort when entering long email
addresses (ids/names). Moreover, it allows the user to find
recipients whose email addresses they cannot recall, which is
particularly likely with listserv groups, long email addresses,
or large collections of email addresses. In this case, the sender
knows who should receive the message but cannot remember
their addresses. Recipient prediction can also allow the sender
to be reminded of forgotten recipients who should receive the

email [1]. This is an important use of such predictions, as
missing a recipient can be costly for senders, missed receivers,
and others. Finally it can prevent leakage of information to
unintended recipients, and, thus, forms a new kind of tool for
ensuring privacy. The importance of identifying forgotten
recipients and information leakage was recently illustrated in a
class the second author taught in Fall 2011. Students in the
class sent the instructor emails that should have also gone to
his teaching assistants, resulting in unnecessary forwards or
missed requests. Perhaps even more alarming, solutions to five
of the twelve assignments, and reports of personal issues, were
mailed accidentally by different students to the whole class
rather than to the instructors, because tthe students confused
the class-help listserv with the class listserv. These are not
isolated problems. A CMU study by Carvalho et al of a
recipient prediction email tool found that at least 9.27% of
emails did not include a desired recipient [2]. With accurate
and effective recipient predictions, users could be reminded of
the correct recipient and, thus, not fall prey to such issues.
These potential benefits could have a significant impact given
the popularity of email and recent research advocating the use
of email as the primary collaboration user interface [3].

 (a) Gmail (b) Eclipse

Token Completion: Recommending current token

(c) Gmail

(d) Eclipse

Figure 1. Token Completion vs. Prediction

Past work that has directly addressed the email recipient
prediction problem can be separated into two distinct
categories: content and group based prediction. These
approaches are email applications of the more general user-
interface idea of using the history of user interaction to
automate the entry of user commands [4]. In content-based
predictions, individual recipients are predicted based on the
text in past messages. The intuition behind this approach is
that similar documents will be shared with the same user(s).
For example, in a university all resumes may be shared with
members of the hiring committee and all promotion material
with members of the promotion committee. Group-based
predictions, on the other hand, associate possible recipients
into groups based on how they were associated in past sent
and received messages. Thus, if a message was sent to all
members of the hiring committee, then, if in the future a
message is addressed to some subset of this committee, a
subset of the remaining members will predicted

These schemes are special cases in the more general area
of automatically clustering users into social groups based on
characteristics they share. In particular, they are related to
schemes that predict named contact-lists [5-7]. The difference
between recipient and contact-list prediction is that the former
predicts a group of users who should receive a specific
message based on the properties of the message, while the
latter identifies multiple groups of users based on general
relationships among the users such as whether two users are
“friends” in a social network [5, 7] or if they have sent a
certain number of messages to each other [6]. As our examples
show, both individual addresses and contact-lists can be
components of email recipient predictions.

 Past works have compared different schemes for email
recipient prediction, but only in limited ways. Specifically,
they have not compared group and content-based schemes,
and different comparisons have not used consistent data sets or
metrics. Our work seeks to offer a more complete comparison
of past approaches and to build on this work in other ways by
answering several new, interesting questions:

1. Dimensionalized design space: Can we identify a
design space of prediction algorithms that includes existing
schemes? Such a space can lead to more effective email
prediction by including previously unexplored subspaces.
Moreover, its dimensions can be used to succinctly compare
and contrast existing and new algorithms, leading to a better
understanding of them.

2. Hierarchical prediction: Previous (content and group-
based) approaches predict a flat list of recipients, requiring
individual recipients to be selected, one at a time. Is it possible
to predict a hierarchical tree of recipients to allow users to
atomically select groups of recipients? Hierarchical prediction
can potentially reduce the overall user effort in selecting
predictions. Each time a prediction is made, users must make
some effort to determine whether the generated prediction is
correct and either accept the prediction or perform some
rejection action, which usually consists of manually entering
some other recipient. Accepting a group rather than an

individual reduces the number of times a user has to process
and accept or reject a prediction. On the other hand, based on
how it is implemented, it can potentially also increase the
overall effort as predictions of groups are riskier than those of
individuals, and, thus, can lead to more rejections.

3. Comparison: Hierarchical prediction adds an
important new dimension to the design space mentioned
above. How do various points in the prediction design space
compare with each other? In particular, how do group-based
and content-based approaches compare with each other and
with a hybrid approach that combines the two; and how does
individual prediction compare with the hierarchical
prediction?

4. Effort metrics and recipient prediction model: What
metrics should be used to evaluate the user effort required in
the compared techniques? The answer to this question depends
on the user-interface provided for suggesting and accepting or
rejecting predictions. We do not innovate in the design of this
user-interface and instead assume a small extension of the one
used in Gmail (Figure 1c) that uses parentheses to group
predicted recipients (Figure 6(b)). Such a user-interface
requires three kinds of user effort: scanning predictions,
selecting predictions, and manually entering recipients.
Previous work has used classical metrics to determine the
degree of false positives and negatives, which do not directly
measure these user efforts. Is it possible to develop new
quantitative metrics that address this problem?

We answer these questions in several stages. We start by
describing dimensions that describe the existing two
algorithms. Next we motivate and define new metrics for
evaluating the effectiveness of recipient prediction, which are
then used to compare the existing schemes. This comparison is
used to motivate a new algorithm for predicting individuals
and sets of individuals. The new algorithm is then compared
with the existing ones using both our class metrics and our
new metrics. The best of the algorithms are then used to
further improve recipient prediction by extending any
individual recipient prediction to support hierarchical
prediction, which is then evaluated. A running example is used
to illustrate the similarities and differences among these
schemes and motivate them, which is a contribution in its own
right.

II. DESIGN SPACE TO DESCRIBE CURRENT SCHEMES

In our model of recipient prediction schemes, individual
recipients or groups are associated with some set of past email
messages, and properties of these sets are used to determine
the likelihood of a correct prediction. This model is illustrated
by Figures 2 and 3, which are used as our running example.
Figure 2 lists the past messages of an email account belonging
to the user Chris, some of which occurred in Fall 2011 and
some of which occurred in Spring 2012. The Fall 2011
messages were addressed to the same receivers but had
different content. The Spring 2012 messages were addressed
to three different groups of recipients, some of which overlap
with previous groups.

Figure 3 specifies a message that the user Chris composed
in Spring 2012. In this newly composed message, Chris has
already addressed Albert, one of the recipients of a previous
message, and is now asking for predictions of other possible
recipients.

As discussed above, past schemes for email recipient
prediction can be grouped into two categories, groups and
content. A group-based algorithm bases its predictions on the
set of recipients in the current message and in each previous
message. Likely predictions are then identified by similarities
between the set corresponding to the current message and any
set corresponding to a past message or messages. For example,

consider messages (a) and
(b) in Figure 2, where
Chris sent two messages
to Albert and Eddie.
Since the two users were
addressed together in the
past, and Albert has
already been addressed in
Figure 3, Eddie is a likely

predicted recipient for the current message. As this example
illustrates, group-based prediction looks at both groups of
users addressed in previous messages and the seed set of users
addressed so far in the current message, either by manual entry
or prediction selection.

However, as one can see by looking across all messages in
Figure 2, email accounts are not this simple. Groups can
overlap, which can lead to users being members of multiple
groups at the same time. Therefore, predictions need to be
ranked in some form. Such rankings use the SOYLENT [8]
idea that (a) the rank of a group is proportional to the strength
of the connections between its members; and (b) the
connection strength can be derived using various properties of
email exchanges. Two such properties used in past work are
time and direction. Time captures the change of groups. For
example, consider the messages (a) and (c) in Figure 2. The
user, Chris, changes classes from semester to semester, and
thus his old group of (Albert, Eddie), should be made less
important than a new group of (Albert, George, Sue) as time
passes.

Direction captures whether the owner of an email account
implicitly created a group by sending a message to others, or

whether some outside source made this specification by
sending the message to the owner. When the owner of the
account sends an email to a set of recipients, it is reasonable to
assume that those individual recipients have some sort of
association. However, if the message was received, it is more
difficult to make that assumption as the sent message may
have incorrectly been sent to the owner, the message may be
spam (Figure 2(e)), or the sender may not be able to receive
messages.

The algorithm of Roth et al. [9], implemented in Google’s
Gmail, combines these four properties (groups, seed, time, and
direction). It works in two stages. First it assigns a weight to
each group based on these four properties, and then, from
these group weights, it determines the individual weight.

Let us consider, first, group weight, which is a function of
several individual weights corresponding to the four
properties. A direction weight is captured by sent and received
constants, whose values are unspecified. A time weight is
computed using the standard half-life formula, which makes
older messages exponentially less important based on a
constant. The impact of the seed is determined using the
intersection of the group with the seed. The Roth et al. [9]
paper identifies four alternatives for calculating the weight of
a group based on these three properties, which define a space
of group-based schemes.

(1) Top Score - The seed is ignored, and the group weight
is a sum of products of direction and time weights for past
messages of the group. (2) Intersection Count - If the
intersection is non-empty, then the group weight is calculated
as 1, and if not, it is calculated as zero. Thus, in this approach,
direction and time are ignored. (3) Intersection Score - If the
intersection is non-empty, then the score is the sum of the
products of direction and time weights; otherwise, it is zero.
(4) Intersection Weighted Score - The group weight is the size
of the intersection multiplied by the sum of products of time
and direction weights.

The scores of individual recipients were computed by the
summing of group scores. An individual, i, has a set of groups
G, of which it is a member. The score of this individual is
calculated as

.)(Gg
gscore

Figure 2. Sample email message history

Fall 2011

Spring 2012

From:

To:

Subject:

Chris

Albert, George, Sue

Let’s make a study group

(c)

From:

To:

Subject:

Chris

Albert, Eddie, George, Sue

Lunch normal time and place?

(d)

From:

To:

Subject:

no_reply

Chris

FREE OFFER!!!!

(e)

(a)

From:

To:

Subject:

Chris

Albert, Eddie

Study group tonight at 7pm

(b)

From:

To:

Subject:

Chris

Albert, Eddie

Our presentation for class

Figure 3. Example message in need of

recipient predictions

From:

To:

Subject:

Chris

Albert

Homework Question

Thus, as we see above, group-based prediction, as
implemented by Roth et al, in fact uses four different
properties of email: group, seed, time, and direction. One
property it does not use is the content of the email. Carvalho
and Cohen [1] use a combination of content and direction of
the email. As mentioned before, the intuition behind this
scheme is that people tend to receive or send email of
“similar” content. We illustrate this intuition with messages
(c) and (d) in Figure 2. Chris has two groups he emails. One is
for a class study group, and one is for a lunch group. If it is a
particularly difficult class, he may be sending and receiving
emails a few times a week, and, in the case of the lunch group,
he eats on a regular basis. Therefore time and direction offer
no help in differentiating between the two groups. However, if
one were to examine the content of the two emails, one could
find that these emails are very different from each other.

In order to effectively use content for prediction making,
an email prediction scheme must define the similarity between
two messages. The algorithm in [1] is based on the TF-IDF
(Term Frequency-Inverse Document Frequency) text mining
technique [10]. Given a set of documents, TF-IDF first
computes a list of words or terms, t1...tn, that occur in these
documents. Then, given a specific document, it calculates a
weight vector, w1..wn, where wi is the weight of term ti in that
document. (How exactly the weight is computed is beyond the
scope of this paper.) Carvalho and Cohen compute TF-IDF
based on all but a small subset of ignored words, which we
replicate in our evaluation, described later. Their scheme treats
each message as a document, and, thus, associates each email
with a weight vector, w1..wn. As in group-based predictions,
each possible prediction is associated with a set of past email
messages, E. A weight vector, W1..Wn, is then formed for each
prediction by summing together the weight vectors for all
messages in E.

After a new message is composed, there exists a weight
vector for each possible recipient and the newly composed
message. The likelihood of a particular prediction, p, is then
calculated as the cosine of the angle between the vector for
that prediction, vp, and the vector for the new message, vm.
The cosine can be computed with the following equation,
where vp • vm is the dot product between the two vectors:

mp

mp

vv

vv
pscore

)(

Based on this equation, each prediction has a score, just as
it did in the group-based case, where a higher score indicates a
more likely prediction.

Thus, we see two different ways of predicting recipients.
While there has been study within the categories of group and
content-based predictions, no work has been done to compare
the two spaces with each other. Such a comparison requires
appropriate evaluation metrics.

III. METRICS

As mentioned above, past work has measured the
effectiveness of predictions through the classic metrics of
precision (P) and recall (R). However, these two metrics only

determine the correctness of predictions - they do not directly
measure how a user’s effort is reduced. This is due to two
fundamental differences between classic prediction systems
and recipient prediction. In the latter, the prediction step is
followed by a user acceptance or rejection of a prediction,
which, in turn, implies that the user knows if a prediction is
correct or not. Thus, the cost of a false positive (predicting an
unintended recipient) incurs the additional effort required to
reject it, and not a wrong user conclusion such as a wrong
medical diagnosis. Second, as we see in the group-based
scheme, predictions can be made incrementally, based on past
user actions.

 A false negative (not predicting an intended recipient) can
indeed lead to a wrong conclusion, as a user may forget an
intended recipient because the system has predicted that no
more recipients are necessary. Thus, the classic metrics remain
relevant. However, additional metrics are needed to more
directly measure the reduction in user effort.

In order to better measure the effort required during the
prediction process, we first had to develop a model of how
predictions are generated, accepted, and rejected. Predictions
are generated as a list of items, where an item may be an
individual recipient or a (potentially hierarchical) group. For a
non-empty top-level list, a user may select an individual or a
group, or reject all predictions in the list. If a list is empty or
the user has rejected all predictions in a list, a user must
manually enter some recipient and then ask for a new
prediction list. The maximum number of leaf nodes in a
predicted list is kept constant in each prediction.

The previously defined metrics can be used to measure
certain aspects of this process. An empty list corresponds to a
false-negative, because there are recipients still left to address,
but the prediction algorithm can find no predictions. By
measuring the ratio of non-empty lists (positives) to total
requests for lists (candidates), recall determines the degree of
false negatives. By computing the ratio of lists that contain a
correct prediction (correct positive) to the total number of non-
empty lists generated, precision determines the degree of false
positives. The higher the recall/precision, the lower the degree
of false negatives/positives. We denote precision and recall
with the variables P and R, respectively.

We introduce a new metric, average acceptance size,
which we denote with the variable A. It measures the average
number of individuals chosen when a user accepts some
prediction from a particular list. In an algorithm that only
predicts individuals, this average acceptance size is 1.
However, if groups are made available as predictions, then this
average acceptance size can be larger, because a single user
action can accept multiple recipients.

A higher value of A reduces the number of clicks
(selections) made by users to select predicted lists. However,
making a click is not the only way users exert effort in an
email system supporting recipient prediction. They must also
scan the recipients in the prediction lists and manually enter
recipients. To determine the cost of these three kinds of user
efforts in an email that is addressed to X recipients, we use the
variables s, c, and m, respectively, to denote the number of

non-empty lists scanned by the user, the number of clicks
made, and the number of recipients entered manually.

 The values of the variables P, R, A, X, s, c, and m are
related to each other by the following system of equations:

(1) XmcA

(2) smcR)(

(3) csP

Equation (1) says that the total number of recipients, X, is
the sum of the number, m, manually entered, and the number,

cA , selected through c clicks. Equation (2) evaluates the

scanning cost, s, by determining the number of times a user
must scan non-empty lists that are generated in the process of
addressing the email. Each time a user accepts a prediction (by
clicking) or manually enters a recipient, the user has implicitly
requested a list prediction beforehand. Thus, the total number
of such requests is c + m. Only R of these requests are non-

empty, and thus only R (c + m) of them must be scanned.
This scanning can further vary based on the size of the list
where larger lists may take significantly more effort to scan.
However, we strictly restrict our lists to contain at most 4
individuals, and thus we assume our scanning costs to be
constant for our different list sizes. Finally, equation (3)
determines the total number of clicks, c, which corresponds to
the total number of correct positives, which, by definition is
the number of non-empty lists, s, multiplied by the precision,
P.

These equations 1, 2, and 3 can be solved to compute the
three effort values s, c, and m:

(4) X
APR

R
s

1)1(

(5) X
APR

PR
c

1)1(

(6)
X

APR

PR
m

1)1(

1

We can divide these three numbers by X to lead to the
normalized fractional values, S, C, and M, respectively.
Through these values, we now have measures of how often
certain types of effort are exerted. An algorithm requires less
user effort than another if it leads to lower (average) values of
S, C, and M for the same email data set. When two algorithms
are partially ordered by these three metrics, we make the
following assumption: clicking a correct prediction takes the
least amount of work and manually entering a recipient takes
the most amount of work. Our justification for the assumption
is the following: When selecting a correct prediction, we
assume the user has already scanned a list and knows which
prediction is correct. When clicking, a user only needs to
determine where to click and perform the clicking action. On
the other hand, manually entering a recipient requires the user
to remember the intended recipient and the spelling of the
recipient’s name or email address.

IV. CONTENT VS. GROUP

The existing and new metrics allow objective, quantitative
comparisons between different points in the recipient
prediction scheme design space. The previous metrics have, in
fact, been used to compare some of these points. Carvalho et
al. compared content and direction-based predictions with
time-based predictions using precision and found that content
and direction yielded the best results [1]. Similarly, Roth et al.
compared group, time, and direction-based predictions with
time and direction-based ones through use of their Top Score
variation and found the combination of all three properties
fared better both in terms of precision and recall [9].

Thus, previous work has not compared group and content-
based schemes, and different comparisons have not used
consistent data sets or metrics. Moreover, as mentioned
earlier, the metrics they have used do not address certain types
of user effort. Therefore, we expand on this work by using
both our new metrics and classic metrics to perform direct

comparisons between content
and group-based prediction
schemes.

In order to effectively
compare various prediction
schemes, we also had to select
appropriate values for the half-
life constant and sent vs.
received mail constants. As
Roth et al did not release the
values they used, we varied
them in the following manner:
For time, we experimented
with half-life values of one
hour, one day, one week, four
weeks, six months, one year,
and two years. We found the
best values vary depending on
which variation of the
algorithm is used. For

Table 1. Results of comparison of past algorithms

Half Life

Relative Sent

Importance P R C M

Content N/A

N/A 0.066 0.980 0.065 0.935

Top Score
Best Precision One Week 0.25 0.105 1.000 0.105 0.895

Best Recall Four Weeks 0.25 0.103 1.000 0.103 0.897

Intersection

Count

Best Precision One Hour 0.25 0.131 0.959 0.126 0.874

Best Recall One Hour 0.25 0.131 0.959 0.126 0.874

Intersection

Score

Best Precision One Week 0.25 0.190 0.958 0.182 0.818

Best Recall Four Weeks 0.25 0.186 0.958 0.178 0.822

Intersection

Weighted

Score

Best Precision One Year 0.5 0.284 0.958 0.273 0.727

Best Recall Four Weeks 2.0 0.111 0.995 0.110 0.890

direction, we defined a constant, relative_sent_importance,
which is defined as sent_importance/received_importance;
where sent_importance is the constant applied for sent
messages and received_importance is the constant for received
messages. Our relative_sent_importance was varied to 0.25,
0.5, 1.0, 2.0, and 4.0, allowing testing with sent messages held
in higher importance in some cases, and received messages in
others.

We generated predictions using both the content-based
scheme and all four of the group-based variations. For the
dataset, we used the version of the Enron email database
retrieved from [11], which contained 127 accounts in total.
The content-based scheme of Carvalho and Cohen also used
Enron accounts, while the group-based scheme of Roth et al.
used Gmail accounts available to Google. For each account,
we ordered the messages by time and removed any non-email
based messages, such as those marked as calendar entries for
outside applications. We then used the first 90% as the set of
past messages for an account. The final 10% of the messages
for an account were used to model prediction making.

For each message, we assumed a seed value of 2 (the
sender and one other intended recipient) at the start of all
predictions. Each time a prediction list was generated, we
assumed the user would select the first correct individual in a
generated predicted list. If no such individual existed, then it
was assumed that the user would manually enter the first
recipient as ordered originally in the email message. We
assume the ordering of recipients was first TO, then CC, and
finally BCC. No such specification of the ordering exists in
past work, so we have no source of comparison for this
assumption.

As discussed above, because the past work of [9] and its
implementation in the Gmail product restricts list sizes to 4
individuals, we do the same. This is an effort to keep our
results comparable to those of past work, as well as avoiding
generating lists that are too difficult to parse.

Using this methodology, we arrived at the results displayed
in Table 1. There is no S value presented in the table due to
the fact that there are only individual predictions, which means
that A = 1 in all cases. Because of this value of A, the value of
S reduces to R, making S superfluous in the table.

Table 1 shows that as M decreases, C increases, which
falls in line with the definitions of C and M. If some individual
was not manually entered, then it must have been selected as a

correct prediction, which means an additional click had to take
place. It also shows that content-based prediction performs
worse than group-based prediction in that there is at least one
group-based prediction algorithm that performs better with
respect to both precision and recall. Additionally, when sorting
by recall or precision, no group-based prediction has as high
of an M value as that of content-based predictions, which
indicates that content-based predictions require more effort for
manual entries of recipients.

We also attempted predictions made by combining both
groups and content. This combined attempt used the
previously computed separate content and group scores. The
two scores were each scaled using adjustable weights and then
summed together to form a cumulative score. In some cases,
we also scaled the content vectors according to the half-life
values and the relative_sent_importance as used in group
scores to include time and direction with content. Regardless
of whether the scores included time or direction or how scores
or vectors were scaled, the combined group and content-based
predictions underperformed those of group-based predictions.

In our best case of all these combinations of groups and
content, we had a recall of 1.00 and a precision of .269, which
imply clicking and manual entry values of .269 and .731,
respectively. This does improve over groups with respect to
the clicking and scanning metrics, but underperforms with
respect to manual entries. As stated above, we assume manual
entry to be the metric which requires the most effort on the
part of the user, which, in this case, implies combined group
and content predictions are less effective than group
predictions. Despite the comparatively low effectiveness
compared to group-based predictions, these values are better
than content alone. This in the very least implies that the TF-
IDF approach benefits from including groups in prediction
making, but as a general approach, if predictions are made
using content, TF-IDF is not a comparatively effective
approach.

Thus, our results show that (a) content is less effective than
groups and (b) the combination of content and groups is less
effective than groups alone. It is possible that the Gmail
implementation of group-based prediction uses more optimal
parameters, which would make our conclusion even stronger.

V. INTERSECTIONS VS. SUBSETS

Because of the low effectiveness of content, we focused on

the use of groups, not content, in recipient

predictions. Our goal was to offer new

ways to generate predictions that are more

effective according to both classical

metrics and our own newly developed

metrics. Both our results and those of Roth

et al. show that it is important to seek

improvements to their scheme.

Table 2. Results of subset based use of seeds

Algorithm Half Life
Relative Sent

Importance
P R C M

Subset Count One Week 0.25 0.837 0.314 0.262 0.738

Subset Score One Week 1 0.849 0.314 0.267 0.733

Subset Weighted Score One Week 0.25 0.853 0.314 0.268 0.732

One improvement, which we present here, is motivated by

applying group-based prediction (with our weights) to the

second author’s email account. He found that, regardless of

seed, every message had the same group of predicted

recipients. Upon further investigation, he discovered that the

reason this group was constantly predicted was because he had

sent them messages frequently over multiple years, including

some messages sent very recently. When making predictions,

since the first author’s email address was always a part of the

seed, this group always intersected with the seed and, thus,

outranked more appropriate predictions due to its high recency

and frequency of contact.

One way to counter this situation is to exclude he sender

from the seed or the ranked groups. (Roth et al. do not

indicate whether they include the sender in their seeds.) While

that approach would work in this specific scenario, it still

allows a small intersection to overwhelm a larger one.

Therefore, we explored an alternative seed-based approach

that does not compute intersections but, instead, looks at

subset relationships between the seed and the ranked groups.

In this subset-based approach, it is possible to develop
variations that are analogues to the Intersection Count and
Intersection Score variations of the intersection-based
approach. The variations are as follows: (1) Subset Count – If
the seed is a subset of a group, then the score of that group is
1, and if it is not a subset, then the score is 0. Just as with
Intersection Count, time and direction are ignored in Subset
Count. (2) Subset Score – If the seed is a subset of a group,
then that group’s score is the direction weight multiplied by
the time weight.

It is more difficult to create a subset-based analogue of the
Intersection Weighted Score variation. If we simply multiply
the time and direction product by the size of the subset, all
values would remain the same relative to each other because
the size of the seed never changes during a single round of
prediction making. However, what is important is the relation
of the size of the subset to the size of the group. Consider a
seed of size 2 that is a subset of two groups whose sizes are 3
and 100. To predict the group of size 100 based solely on the
seed value, the algorithm would, in essence, be guessing 98
individuals. However, if the group of size 3 were predicted
solely based on the seed value, the algorithm would only be
guessing one individual, which ultimately leaves a smaller
uncertainty. Therefore we define the Subset Weighted Score

for a seed and group to be time and direction weights
multiplied by |seed|/|group|.

The results of using the subset-based approach to seeds are

displayed in Table 2. As in the intersection-based approach,

weighing scores gives best results. The best case of

Intersection Weighted Score had a much higher recall value

than the best case of Subset Weighted Score, while the reverse

was true for precision. With the use of our new metrics, we are

able to distinguish the effects such results would have on user

effort.

The metrics C and M yield similar values in both cases,
indicating that users will have to exert roughly the same
amount of effort for clicking predictions and manually
entering recipients. However, the metric S, which is equal to
recall in the case of individual predictions, is much lower
when using a subset-based approach. Thus, our new metrics
show that subset-based approaches reduce user effort with
respect to scanning prediction lists, and, as a result, these
approaches outperform the intersection-based approaches.

VI. HIERARCHICAL PREDICTIONS

The fact that the subset-based treatment of seed values
outperforms that of intersection-based treatment indicates that
there is a hierarchical tree of groups in the set of possible
predictions. If this is indeed true, users should be able to
reduce their click count by selecting not just leaf nodes in the
tree but also intermediate nodes. This feature, in turn, requires
a scheme for computing the hierarchy and a user-interface for
displaying and selecting both leaf and non-leaf nodes in the
hierarchy. There are several approaches for doing so – the one
we settled on makes few changes to the algorithm and user-
interface for individual predictions.

Instead of developing a new scheme from scratch, we
create hierarchical prediction lists from individual prediction
lists that were generated by some other group-based algorithm
external to and, thus composable with, our algorithm. This
relationship is illustrated in Figure 4. Our algorithm
generates hierarchical prediction list using predicted
individuals and ranked groups from some external
algorithm(s). In general, a hierarchical prediction list can
contain overlapping groups, as in the case of [6]. We constrain
the hierarchy to a tree, where a node has a single parent, which
allows us to make few changes to the user-interface.

Figure 4. Input and output of our hierarchical algorithm

Our hierarchical algorithm builds a tree out of the
individual prediction list, re-ordering the predictions if
necessary. We assume parentheses (or some other marker
symbol) are used to show the groupings, and that the
parentheses do not significantly add to the scanning cost,
because our experiments, like those of Roth et al. [9], limit our
prediction lists to at most 4 individuals. An example of this
interface is show in Figure 6(b), which is a part of a Mozilla
Thunderbird extension that we developed.

With the assumption of at most 4 individuals, there are at
most 3 groupings and, therefore, at most 6 parentheses (2
parentheses per grouping). With this relatively small number
of characters added to the prediction list, we assume that our
scheme does not add a significant amount of effort with
respect to scanning an individual prediction list. However, if
prediction lists contained no limit or a much higher limit on
the number of individuals, the number of groupings, and thus
parentheses, could increase significantly, which could
drastically change the scanning costs of a hierarchical
prediction list compared to a flat list.

Because our individuals are generated using external
algorithms, individuals are selected as they would in previous
UIs, by clicking the name of that individual. To select a
grouping, the user must click one of the parentheses associated
with that grouping.

To illustrate the generation of a hierarchical list, we will
use a variation of our running example. Chris has a larger
group of friends with whom he has lunch (Figure 2(e)). This
group is subdivided into smaller study groups based on who is
enrolled in his various classes. For this illustration, we will
also assume that an external algorithm finds the list of
predicted individuals {Albert, Eddie, George} and finds the
following set of groups: <Albert> <Albert, George>, <Albert,
Eddie, George >. Our goal is to organize these three nodes
into a tree based on the ranked groups.

Figure 5 gives our algorithm for meeting this goal. In this
algorithm, individual and hierarchical lists are defined by the
type PredictionList, which is a list of objects of type
Prediction. A Prediction can be a Grouping or an Individual,
and has two fields, group and rank. The former field is the top
ranked group of which the prediction is a member/subset, and
the latter is the rank of said group. The variable indivList
contains Prediction objects for the individuals predicted by the
external algorithm. In our example, the indiv list would
contain the following Individual objects:

{id: Albert, group: <Albert>, rank: 0}

{id: Eddie, group:<Albert, Eddie, George>, rank: 2}

{id: George, group:<Albert, George>, rank: 1}

The function buildHierarchicalPredictionList() builds a
hierarchical list from indivList. This is done by calling the
function addToPredictionList(), which adds each member of
the original list, indivList, to the hierarchical list. During this
process, as each individual is added to the hierarchical list, the

(a) Addressing recipients

(b) Predicting Recipients

Figure 6. Hierarchically Predicted Recipients in a
Mozilla Thunderbird Extension

object types:
PredictionList: ordered set of predictions
Prediction: {group, //mapped group of individuals
 rank} //order in prediction list
Grouping ISA Prediction: ordered set of predictions
Individual ISA Prediction: {id} // name of individual

global vars:
 indivList = list of individual predictions of non-hierarchical scheme

functions:
buildHierarchicalPredictionList():
 treeList = new PredictionList // create empty list
 forall p in indivList do addToPredictionList(treeList, p)

addToPredictionList(treeList, new):
 merged ← false
 next ← new;
 forall old in treeList where old != next do

 if old.group next.group | next.group old.group then

 if next.group old.group then
 forall other in treeList where other!=old & other != next

 & other.group next.group do

 //grouping of all other predictions with group other.group
 mergedGrouping ← merge(other, next)
 remove next and other if they were in treeList
 list.add(mergedGrouping)
 next ← mergedGrouping
 endfor
 endif
 merged ← true
 mergedGrouping ← merge(old, next)
 remove old and next if they were in treeList
 list.add(mergedGrouping)
 next ← mergedGrouping
 endif
 endFor
 if !merged then list.add(new)
 elseif treeList.size == 1 & tree_list is within a Grouping then
 //all members of a Grouping were merged into a subgroup
 treeList.members = members of only child
 endif

merge (p1, p2): //assumed p1 p2
 if p2 is Grouping then
 addToPredictionList(p2.members, p1)
 p2.rank ← max(p1.rank, p2.rank)
 return p2
 else //p2 is individual
 g = new Grouping with p1 and p2 in members
 g.group ← p2.group
 g.rank ← max(p1.rank, p2.rank)
 return g
 endif

Figure 5. Pseudocode for hierarchical grouping

object types:
PredictionList: ordered set of predictions
Prediction: {group, //mapped group of individuals
 rank} //order in prediction list
Grouping ISA Prediction: ordered set of predictions
Individual ISA Prediction: {id} // name of individual

global vars:
 indivList = list of individual predictions of non-hierarchical scheme

functions:
buildHierarchicalPredictionList():
 treeList = new PredictionList // create empty list
 forall p in indivList do addToPredictionList(treeList, p)

addToPredictionList(treeList, new):
 merged ← false
 next ← new;
 forall old in treeList where old != next do

 if old.group next.group | next.group old.group then

 if next.group old.group then
 forall other in treeList where other!=old & other != next

 & other.group next.group do

 //grouping of all other predictions with group other.group
 mergedGrouping ← merge(other, next)
 remove next and other if they were in treeList
 list.add(mergedGrouping)
 next ← mergedGrouping
 endfor
 endif
 merged ← true
 mergedGrouping ← merge(old, next)
 remove old and next if they were in treeList
 list.add(mergedGrouping)
 next ← mergedGrouping
 endif
 endFor
 if !merged then list.add(new)
 elseif treeList.size == 1 & tree_list is within a Grouping then
 //all members of a Grouping were merged into a subgroup
 treeList.members = members of only child
 endif

merge (p1, p2): //assumed p1 p2
 if p2 is Grouping then
 addToPredictionList(p2.members, p1)
 p2.rank ← max(p1.rank, p2.rank)
 return p2
 else //p2 is individual
 g = new Grouping with p1 and p2 in members
 g.group ← p2.group
 g.rank ← max(p1.rank, p2.rank)
 return g
 endif

function attempts to merge the new individual with the
existing members of the hierarchical list. This merging, which
occurs because of subset relationships between the group field
of the new individual and of existing members, arranges the
list into a hierarchy.

Because these merges occur based on subset relationships, a
newly added individual may not merge with any existing
members due to a lack of such a relationship. In this case, the
new individual is added to the end of the hierarchical list. For
example, in Figure 7(a), when the first individual, Albert, is
added to the hierarchy, there are no other members of the
hierarchical list, and thus Albert cannot be merged with an
existing member. Thus, the hierarchy will be a single leaf
node and the list would be displayed as: Albert.

However merges will occur in cases when a subset
relationship exists between the group fields. In one such case,
the newly added Individual has a group field that is a superset
of an existing member’s group field. The algorithm will
perform a merging by placing both the new Individual and the
existing member in a new Grouping and that Grouping
replaces the old member in the hierarchy, thus occupying its
original position. In our example, in Figure 7(b), Eddie is
initially added as a leaf node to the hierarchical list. Then,
since his group field, <Albert, Eddie, George>, is a superset of
Albert’s group field, <Albert>, the two are put in a new
Grouping which replaces the Albert node in the hierarchy,
resulting in the hierarchy shown in Figure 7(c). The newly
created Grouping’s group field takes the value of the largest
group fields from its members. This hierarchy gives us
(Albert, Eddie) as our displayed list at this stage.

Finally, in the last case we consider, the newly added
Prediction has a group field that is a strict subset of an existing
member’s group field. If the existing member is a Grouping,
the new Prediction can be added to the existing member.
However, if the existing member is an individual, the previous
approach of creating a new Grouping containing the old and
new Predictions is used. In our example, we must next add
George to the hierarchy in Figure 7(d). His group field,
<Albert, George>, is a subset of the top level Grouping’s
group field, <Albert, Eddie, George>, and thus he is added to
the existing Grouping in Figure 7(e). This Grouping will retain
the same group field, since it was the largest group field of all
of its members.

To support multi-level hierarchies, after an initial merging
of a new recipient with a Grouping the algorithm recursively
attempts to merge him/her with other members of the
Grouping. In the example, since George is the newly added
Prediction, and his group field is a superset of Albert’s group
field, a new Grouping containing both Albert and George is
formed, the Albert and George nodes are deleted, the new
Grouping is placed at Albert’s position, leaving us with the
hierarchy in Figure 7(f), and the displayed list of:

((Albert, George), Eddie).

The groupings are ordered by the highest ranking individual
contained in the grouping. Albert came before Eddie in the
original individuals prediction list, so the grouping (Albert,
George), comes before the individual Eddie.

To test the effectiveness of these groupings, we composed
our algorithm with two best variations of the intersection and
subset approach. We ran a similar modeling scheme to the one
used in the individual predictions. Our only change was in
how we assumed a user would accept predictions. Using the
past approach, we assume the user accepted the first correct
prediction. In the hierarchical approach, we assume the user
will pick the largest grouping that contains all correct
predictions, because by doing so, the user is attempting to
reduce their work as much as possible.

The results of our testing are detailed in Table 3. P and R
values are lower than those seen in purely individual
predictions, which is to be expected if the tree-based scheme
identified some of the intended groupings. As multiple
predictions are accepted at once, such a scheme reduces the
number of times a prediction list containing a correct match is
generated.

(a) Adding Albert

(b) Eddie is the next prediction

(c) Merging Eddie at the top level

(d) George is the next prediction

(e) Merging George at the top level

(f) Merging George within the hierarchy

Figure 7. Steps of generating the example hierarchical list

Albert

Albert Eddie

<Albert, Eddie, George>

Albert Eddie George

George

<Albert, Eddie, George>

Albert Eddie

<Albert, Eddie, George>

Albert Eddie

<Albert, Eddie, George>

Eddie <Albert, George>

Albert George

The M value remains approximately the same, which is
also to be expected. Because our grouping algorithm is
orthogonal to the generation of individual predictions, we still
generate empty lists and lists with no correct predictions at the
same rate as in the external algorithm.

The S and C values are reduced by a significant amount.
Specifically, our S values are reduced by half in the case of
subset-based treatment of the seed and the click count is
reduced by about half in all cases. This indicates that the user
will have to select predictions half as often in all cases and
will have to scan prediction lists half as often in the best case,
which is a significant reduction in effort.

VII. CONCLUSION AND FUTURE DIRECTIONS

This paper makes several related contributions. It (a)
classifies existing email prediction schemes into content and
group-based; (b) defines the new metrics for capturing the user
effort required to scan, click, or manually enter a recipient; (c)
compares the existing schemes using new and old metrics; (d)
identifies parameter values for the group-based schemes that
gave the best results. In addition, it describes and evaluates
new algorithms that (a) extend content-based prediction with
direction and time; (b) combine the extended content-based
prediction with group-based prediction; and (c) convert
individual prediction lists created by a group-based prediction
into a tree in which arbitrary nodes can be selected by the user.
Its evaluations lead to several conclusions. (1) Group-based
prediction algorithms perform far better than content-based
ones. (2) Combining content and group into a single algorithm
outperforms the results of content-based predictions, but
ultimately fails to achieve better results than the best cases of
group-based predictions. (3) An intersection-based treatment
of seeds in prediction making performs worse than a subset-
based, which implies a hierarchy of groups. (4) Grouping
individuals leads to a significant reduction in user effort with
respect to scanning lists and clicking correct predictions.

While this paper answers several important questions in
recipient prediction, it also leaves numerous other questions
unanswered: Can other schemes of content analysis be
incorporated to create effective prediction lists? We have not
been able to make content schemes work efficiently or
effectively but are more hopeful about template-based
analysis. Can prediction algorithms take into account the fact
that groups grow and shrink? The current algorithms,

including ours, create a new
group with each membership
change. Are there schemes to
effectively predict groups
previously unseen in any one
email message? One approach
for addressing the two group-
based questions above is to
make predictions based on
training from multiple accounts
rather than a single account,
possibly combining the schemes

presented here with community detection algorithms.

The Gmail user-interface assumed by our work presents a
non-scrollable linear list of at most four items displayed
dynamically for each message. There are several other
alternative user-interfaces possible, one of which is shown in
Figure 1(d). It would be useful to compare the usability of
existing and new user-interfaces for token prediction in
general and email-recipient prediction in particular. Such work
could determine the impact of increasing the size of the
recommended list, providing a scrollable list, providing a
static message-independent area for displaying and selecting
recipients, showing hierarchical lists using a hierarchical
display, and integrating token completion and prediction by
showing for each completed email address the associated
recipient predictions.

By comparing past techniques with both classic and novel
metrics and by expanding into new areas and techniques, this
paper provides a basis for investigating these intriguing
questions.

REFERENCES

[1] Carvalho, V.R. and W.W. Cohen. Ranking Users for Intelligent Message
Addressing. in Proc. of ECIR. 2008.

[2] Carvalho, V.R., R. Balasubramanyan, and W.W. Cohen. Information
Leaks and Suggestions: A Case Study using Mozilla Thunderbird. in
Proc. of Conference on Email and Anti-Spam. 2009.

[3] Bellotti, V., et al. FLANNEL: adding computation to electronic mail
during transmission. in Proc. of UIST. 2002.

[4] Greenberg, S. and I.H. Witten. How users repeat their actions on
computers: Principles for design of history mechanisms. in Proc. of CHI.
1988.

[5] Bacon, K. and P. Dewan. Mixed-Initiative Friend-List Creation. in Proc.
ECSCW. 2011.

[6] MacLean, D., et al. Groups without tears: mining social topologies from
email. in Proceedings of IUI. 2011.

[7] Friggeri, A., G. Chelius, and E. Fleury., Triangles to Capture Social
Cohesion. in Proc. of The Third IEEE International Conference on
Social Computing. 2011.

[8] Fisher, D. and P. Dourish. Social and Temporal Structures in Everyday
Collaboration. in Proc. CHI. 2004.

[9] Roth, M., et al. Suggesting Friends Using the Implicit Social Graph. in
Proc. KDD. 2010.

[10] Salton, G., E.A Fox, and H., Wu, Extended Boolean Informational
Retrieval. Communications of the ACM, 1983. 26(11).

[11] The Electronic Discovery Reference Model, EDRM Enron PST Data
Set. http://www.edrm.net/resources/data-sets/enron-data-set-files.

Table 3. Hierarchical Results

Half

Life

Relative Sent

Importance P R A S C M

Intersection Score
One

Week
0.25 0.13 0.956 1.666 0.883 0.114 0.809

Intersection Weighted

Score

One

Week
0.25 0.189 0.953 1.75 0.84 0.159 0.722

Subset Score
One

Week
0.25 0.74 0.21 1.975 0.183 0.135 0.733

Subset Weighted Score
One

Week
0.25 0.748 0.211 1.959 0.184 0.137 0.731

