
Lunch Group Lunch Group

Evolving Friend Lists in Social Networks

An unweighted and undirected social

graph can change in three ways:

• 1-to-1 mappings of old friend lists to recommended lists

• Expects friend lists to grow at the same rate as the social graph

• Expects members that already existed in the social graph to be apart

of the same friend lists

Jacob Bartel and Prasun Dewan

UNC – Chapel Hill RecSys 2013 http://cs.unc.edu/~bartel/#EvolvingFriendLists

Dave

Alice

Carol

Bob Alice

Carol

Bob

Adding

Members

Dave

Alice

Carol

Bob Alice

Carol

Bob
Removing

Members

Alice

Carol

Bob Alice

Carol

Bob
Changing

Connections

Dave Dave

Friend lists likely change alongside the

social graph in similar ways

Lunch Group

Alice

Carol

Bob

Lunch Group

Alice

Carol

Bob

Dave

Current Social Graph

Old Social Graph

Old Friend Lists

User Effort

Specify Friend List

Evolutions

New Friend

Lists

Current Social Graph User Effort

Existing New Friend

List Recommender

New Friend

Lists

Edit and label new

recommended friend

lists

Current Social Graph

Old Social Graph

Old Friend Lists

User Effort

Match and merge friend

lists and recommender

results

Evolved Friend

Lists

Existing New Friend List

Recommender

Edit

recommended

evolutions

IntegratedMatchAndMerge(oldLists, recommendations) {

 recommend_evolutions = empty set

 threshold = 0

 while len(oldLists) > 0 && len(recommendations) > 0 {

 forall oldList in oldLists{

 matchedVals = []

 forall recommendation in recommendations

 c = closeness(oldList, recommendation)

 if c <= threshold {

 matchedVals.append(recommendation)

 }

 }

 if matchedVals.size() == 1 {

 recommended_evolutions.add(merge(oldList,matchedVals[0]))

 recommendation.remove(matchedVals[0]))

 oldLists.remove(oldList)

 }

 }

 threshold += 1

 }

 return recommended_evolutions

}

Manual

Full Recommendation

Change Recommendation

We evaluated the two recommendation approaches relative to manual

in terms of cost (adds and deletions) required by the users

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

C
o

st
 r

e
la

ti
ve

 t
o

 m
an

u
al

Growth rate of social graph

Full Recommendation

Change Recommendation

Motivation

Approaches Match and Merge Details

Dataset
Using data from a user study of 12 individuals in Facebook, generated an

old states of each users friend list by removing a randomly selected set of

members from both the social graph and its friends lists.

Evaluation

Since this is a first attempt a this problem, we restricted our evolutions to

users who only add and never remove members from their social graph.

We then tested three approaches:

integratedMatchAndMerge(oldLists, recommendations) {

 recommend_evolutions = empty set

 threshold = 0

 while length(oldLists) > 0 && length(recommendations) > 0 {

 foreach oldList in oldLists{

 matchedVals = []

 foreach recommendation in recommendations

 if closeness(oldList, recommendation) ≤ threshold {

 matchedVals.append(recommendation)

 }

 }

 if matchedVals.size() == 1 {

 recommended_evolutions.add(merge(oldList,matchedVals[0]))

 recommendation.remove(matchedVals[0]))

 oldLists.remove(oldList)

 }

 }

 threshold += 1

 }

 return recommended_evolutions

}

closeness(oldList, recommendation) {

 return EuclideanDistance(<expected growth, 0 adds, 0 deletes>,

 <actual growth, added old social graph members,

 removed old social graph graph members>)

}

Alice

Carol

Bob

Dave

Alice

Carol

Bob

Lunch Group Lunch Group

Alice

Carol

Bob

Dave

Alice

Carol

Bob

