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Evolving Friend Lists in Social Networks 

An unweighted and undirected social 

graph can change in three ways: 

• 1-to-1 mappings of  old friend lists to recommended lists 

• Expects friend lists to grow at the same rate as the social graph 

• Expects members that already existed in the social graph to be apart 

of the same friend lists 

Jacob Bartel and Prasun Dewan 

UNC – Chapel Hill RecSys 2013 http://cs.unc.edu/~bartel/#EvolvingFriendLists 
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IntegratedMatchAndMerge(oldLists, recommendations) { 

    recommend_evolutions = empty set 

    threshold  = 0 

    while len(oldLists) > 0 && len(recommendations) > 0 { 

        forall oldList in oldLists{ 

            matchedVals = [] 

            forall recommendation in recommendations 

                c = closeness(oldList, recommendation) 

                if c <= threshold { 

                    matchedVals.append(recommendation)  

                } 

            } 

            if matchedVals.size() == 1 { 

                recommended_evolutions.add(merge(oldList,matchedVals[0]))  

                recommendation.remove(matchedVals[0]))  

                oldLists.remove(oldList)  

            } 

        } 

        threshold += 1 

    } 

    return recommended_evolutions 

} 

Manual 

Full Recommendation 

Change Recommendation 

We evaluated the two recommendation approaches relative to manual 

in terms of  cost (adds and deletions) required by the users 
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Motivation 

Approaches Match and Merge Details  

Dataset 
Using data from a user study of 12 individuals in Facebook, generated an 

old states of each users friend list by removing a randomly selected set of 

members from both the social graph and its friends lists. 

Evaluation 

Since this is a first attempt a this problem, we restricted our evolutions to 

users who only add and never remove members from their social graph.  

We then tested three approaches: 

integratedMatchAndMerge(oldLists, recommendations) { 

  recommend_evolutions = empty set 

  threshold  = 0 

  while length(oldLists) > 0 && length(recommendations) > 0 { 

    foreach oldList in oldLists{ 

      matchedVals = [] 

      foreach recommendation in recommendations 

        if closeness(oldList, recommendation) ≤ threshold { 

          matchedVals.append(recommendation)  

        } 

      } 

      if matchedVals.size() == 1 { 

        recommended_evolutions.add(merge(oldList,matchedVals[0]))  

        recommendation.remove(matchedVals[0]))  

        oldLists.remove(oldList)  

      } 

    } 

    threshold += 1 

  } 

  return recommended_evolutions 

}  

closeness(oldList, recommendation) { 

  return EuclideanDistance(<expected growth, 0 adds, 0 deletes>,  

    <actual growth, added old social graph members, 

     removed old social graph graph members>) 
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