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ABSTRACT 

In a social network, users can sort members of their social graph 

into friend lists to both understand the social structures within the 

graph and control the flow of incoming and outgoing information. 

To reduce the user-effort required to create these lists, previous 

work has developed techniques for generating friend-lists in a 

static social graph. This paper considers the user effort required to 

create friend lists in an evolving graph. We have developed 

several new initial quantitative metrics to capture this effort, and 

identified an initial technique for modeling graph growth. We 

have used these metrics and model to compare two techniques for 

evolving friend lists when the social graph grows: manual 

evolution – the user evolves friend lists using no external tools – 

and full recommendation – an existing state of the art tool 

recommends a whole new set of friend lists.  In these 

comparisons, we used the friend lists of 12 individuals, and 

simulated the growth of their social graphs and friend lists using 

our graph-growth model.  Intuitively, when the graph evolves by a 

small (large) amount, the manual (automatic) approach should 

perform better. Our experiments show that full recommendation 

performs better than manual when the social graph changes by 

more than 1%, and yields an almost complete reduction in effort 

in the best cases.  

Categories and Subject Descriptors 

H.5.3 [Information Systems] Group and Organization Interfaces 

– computer-supported cooperative work, evaluation/methodology  

General Terms 

Algorithms, Management, Measurement, Experimentation, 

Security, Human Factors. 
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1. INTRODUCTION 
Currently, social network users have a large number of friends 

with whom they share large amounts of information in a variety of 

forms, such as posts, messages, photos, and links. One recent 

statistic stated that the average Facebook user has 130 friends and 

shares 90 pieces of content with those friends per month [8]. With 

such broad and varied forms of communication, certain tasks 

become difficult. A user must be able to organize their friends to 

understand the social structures to which they belong, filter out 

and sort incoming information, and control where outgoing 

information is directed.  

One approach to reduce this difficulty is to group users sharing 

some characteristic(s) and apply the same information controls to 

each member of a group., Several popular social networks today 

allow an arbitrary number of friend lists as they are called in 

Facebook (and tags, groups, or circles in Renren, LinkedIn, and 

Google+). Previous studies have found that users either do not 

know how to create these lists [13] or are not willing to put the 

time and effort required to create them [3, 8, 9, 13]. In one health 

study [10], people who wished to share their medical problems 

with others did not use Facebook to do so because of the fear that 

this information may reach unintended ears. This is consistent 

with a more general problem of the high effort cost in access 

control lists [10], 

The question then becomes how to reduce the costs of creating 

these friend lists. One approach is to create a recommendation 

tool to generate these lists  [2, 3, 6, 9]. With such a tool, the user 

only has to approve, disapprove, or modify a recommended list 

rather than learn how to create a list and then generate a list from 

scratch, leading to significantly less learning and effort costs. 

Previous research has shown that the cost of manually editing 

recommended lists is a small fraction of the effort required to 

manually create the lists from scratch. However, current friend list 

recommendation tools make recommendations only when a friend 

list is initially created [3, 6, 12], or are limited to 

recommendations for two lists [7]. How this arbitrary number of 

lists should evolve as the social graph changes has been explicitly 

stated as an open problem by authors of these tools [2, 3, 9].  

This paper takes a first stab at addressing this problem. It 

identifies initial new quantitative metrics to capture the effort a 

user has to exert to manually edit, accept, or reject 

recommendations  In addition, it derives an initial technique for 

modeling graph growth It uses these metrics and model to 

compare two approaches for friend list evolution: manual 

evolution - the user evolves (manually or automatically generated) 

friend lists using no tools and full recommendation – a state of the 

art friend list recommendation tool is used to recommend a whole 

new set of friend lists. 

2. FRIEND LIST RECOMMENDATION 

DESIGN SPACE  
Our problem is a sub-problem of the general problem of finding 

communities in a network of nodes [3]. Our focus is on 

recommending classification of friends of a particular user into 

(potentially overlapping) friend lists. There have been a variety of 

diverse approaches to this problem in previous work. To combine 

the ideas in these approaches and to better understand and 

describe our own work, we have developed a design space of 

friend list recommendations, which is a contribution in its own 

right. These approaches can be divided into two broad schemes, 

member suggestion [2, 12] and group creation [3, 6, 8, 9] . 
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Member suggestion recommends friends who should be added to 

a new friend list. A user initially has an unpublished empty friend 

list, for which a recommender suggests new members. From those 

suggestions, the user selects appropriate additions to the friend 

list. The user then may accept this list or request more 

recommendations, forming a cycle in the work flow where each 

iteration of the cycle requires user input. This process is then 

carried out for other friend lists. 

In group creation, the user starts with no friend lists. The 

recommender suggests a set of new friend lists by determining 

clusters within the user’s set of friends, each of which the user can 

edit or reject. The edited friend lists are then published. As 

opposed to the incremental member suggestion approach, which 

may require user input multiple times for recommendations for 

each friend list, the “batch” group creation approach requires user 

input at only one point for all recommendations.  

Recommendation schemes can be further categorized based on 

how they group users. Again, there are two main approaches. The 

first is property-based clustering, which clusters individuals based 

on shared values of associated attributes such as age, sex, or 

location. The second is connection-based, which clusters 

individuals based on subsets of vertices in the social graph that 

are highly connected. Each of these approaches has its strengths 

and weaknesses. The property-based approach uses more 

information, and thus, is likely give predictions that are at least as 

precise as those of the connection-based approach. On the other 

hand, because it is dependent on the individuals’ properties, it is 

restricted to systems and users where these properties are 

available and correct. Some systems may grant limited access to 

these properties due to privacy or security reasons, and many 

users may specify an incorrect or incomplete set of properties, 

thus limiting this technique to subset of social networks. 

These different techniques can be sorted into the design space, 

shown in Figure 1. As indicated, there has been work in all points 

involving member suggestion and group creation in this space. 

3. FRIEND LIST EVOLUTION 
Previous approaches offer recommendations only at a friend list’s 

creation time. However, social networks can gain and lose 

members and connections, which would require the evolution of 

friend lists. Such evolution is not restricted to social networks. It 

occurs in any system that can be improved or expanded while 

retaining some of its old functionalities, and is often tool-

supported. For example, database refactoring systems restructure 

databases as they grow to improve the architecture while retaining 

the original information, and code refactoring systems update 

code to improve organization and readability while retaining the 

original behavior. Our contribution is to consider this issue in the 

context of friend lists. 

There are three ways that a social graph can change: members can 

be added, members can be removed, and connections can be 

changed. In this first cut at friend list evolution, we address only 

adding individuals and connections to a user’s social graph and 

friend lists. Thus, our work applies directly to only those users 

who do not do “garbage” collection to delete connections or 

regroup users in a social graph.  

To illustrate this evolution, we introduce a running example 

illustrated in Figure 2. In the past (time tk-1) Joe’s social graph 

contained a 6 friends, Alice, Bob, Carol, David, Eva, and Frank, 

and two friend lists, Research Group and Social Group (Figure 2 

(a)). Between time tk-1 and tk, Joe’s company hired two people, 

Greg and Hal, and Joe’s social graph grew to include them (Figure 

2(b)). Joe also wants each of his friend lists to grow to include his 

new friends (Figure 2 (c)).   

One way Joe could reach these ideal lists is the manual approach, 

where he determines what has changed in the social graph 

between time tk-1 and tk and evolve the friend lists accordingly. 

This approach has the possibility of being the most precise 

because it takes all of a user’s intentions into account. However, it 

requires significant work if the number of friends or friend lists is 

significantly large or there are significant changes to the social 

graph. Moreover, this approach requires that the user identify 

changes between the different states of the social graph, which 

may not be feasible if the social graph is significantly large or has 

changed a significant amount.  

Full recommendation uses a friend list recommendation tool, or a 

recommender engine, to generate a new set of friend lists from the 

evolved graph, which the user then edits and labels. As mentioned 

earlier, friend list recommendation can be divided into member 

suggestion and group creation. Each of these approaches has its 

pros and cons in terms of group evolution. To illustrate, we 

Figure 2. Design space of friend list recommendations 
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continue with our running example where the social a 

recommender engine generates the new friend lists in Figure 2(d).  

Consider the scenario where Greg and Hal are added to Social 

Group and Research Group remains unchanged. In general, 

member suggestion, the user may first unnecessarily ask for 

recommendations for Research Group.  Alternatively, group 

creation may only present the user recommended changes to 

Social Group. If the recommendations made using member 

suggestion and group creation are both perfectly effective, then it 

can be assumed that in group creation a user will only handle 

friend lists that change, leading to possibly fewer steps.  

However, group creation cannot use feedback to adjust 

recommendations, while member suggestion’s iterative nature 

allows feedback throughout the recommendation process, which 

can be used to improve future recommendations. Consider the 

situation in which Greg and Hal should be added to Research 

Group and Social Group, respectively.  Let us assume that 

without user feedback, both approaches predict the incorrect list 

for each user. After the user overrides its first wrong suggestion, 

member suggestion can correct its second prediction. Group 

prediction would require the user to correct both predictions. 

In this paper, we focus on group creation because it has been 

more extensively covered by past work (including our own). We 

present the intuitive analysis above to show that it would be 

useful to also look at member suggestion in future work. 

Thus, in our comparison of the two evolution approaches, manual 

and full recommendation, we assume that the recommender 

engine uses group creation. Assuming such an engine is effective, 

which has been shown to be true in past work by ourselves and 

others, full recommendation could work better than the manual 

approach. However, the recommender engine may reintroduce 

previously rejected recommendations – a cost not incurred in the 

manual approach. Thus, it is difficult to predict which of these 

approaches will require less effort. If the social graph has changed 

by a small amount, the effort required to manually add the 

members might be less than that required to correct and label the 

predictions of a friend list recommender. 

4. EVALUATION AND ANALYSIS 
In order to test our scheme, we analyzed a variety of methods for 

evaluating our work. The first option we investigated was to 

generate artificial networks. However, such an option may not 

match reality. The most realistic option, of course, is to use a field 

study observing how users actually evolve their friend lists. 

However, such a study would possibly take years to complete and, 

more importantly, due to the limited control it allows, it would be 

unable to compare different approaches using the same users. A 

third option would be to perform a lab study at a single point of 

time. Such an approach, however, requires us to model friend list 

and social graph growth. 

This is the approach we took. We used data from a previous study 

in which 12 users were asked to create friend lists from their 

current social graph [3], and generated previous evolutions of 

friend lists and social graphs. There has been a large amount of 

work on modeling future graph growth, but little done to model 

how a graph may have grown to its current state. 

We looked at these various alternative approaches to modeling 

future graph growth to see if any are applicable to our own 

problem domain. One such approach, which is used for modeling 

remote sensor networks, randomly distributes nodes on a plane or 

three-dimensional surface. Then based on the how close two 

nodes are to each other, an edge may be formed between the two 

nodes [5]. This approach is not compatible with our domain as 

edges are not dependent on the closeness of the nodes they are 

connecting. In a social graph, two nodes that are a large distance 

apart when plotted geometrically may still have an edge 

connecting them, or, similarly, two nodes that have a small 

geometric distance may not have an edge between them. 

There has also been work modeling graph growth based on the 

power law, which states that the number of nodes with degree d is 

proportional to the value 1/dα where α ≥ 0. Using this relationship, 

when a vertex is added to a graph at time t, it will connect to some 

existing vertex with probability dv,t/2et where dv,t is the degree of 

vertex v at time t and et is the number of edges at time t [1, 4]. 

Existence of the power law has been shown in large graph 

representations, such as citation networks [11] or collaboration 

graphs of movie actors [4] and thus such graphs have been 

effectively modeled using the above technique. However, smaller 

graphs have been shown to be more difficult to approximate with 

the power-law [4], and since our graphs are only one-hop sub-

graphs of the global social graph, our graphs are not large enough 

to be appropriately modeled using the power-law. Moreover, upon 

analyzing our user study data, the social graphs for our users did 

not display an adherence to the power law. 

Because of the failure of these modeling techniques to map to our 

problem domain, we used a randomized approach to model past 

graph evolution. To model an evolution at time tk-1, we assumed 

there is a set of new members (Mnew,k) for our social graph at time 

tk (Sk)., where each of these new members would have been added 

to the social graph after time tk-1. We can then subtract this new 

set of members from the social graph (Sk) and friend lists at time 

tk (Fk) to find the respective Sk-1 and Fk-1. 

With this model of group growth, we can model the growth of 

both the social graph and friend lists between time tk-1 and tk and 

vary growth rates by adjusting the size of Mnew,k. Specifically, we 

modeled these growth rates as a proportion of the size of global 

social graph by defining a proportion p = |Mnew,k|/|Sk| and varied p 

over a wide range of values as shown in Figure 3’s x-axis.  

This approach is limited in that it cannot model member deletion. 

Because we only have friend lists and social graphs from a single 

time slice, our data does not give us any information of 

individuals that are currently missing from the Sk but were 

contained in some previous Sj where tj < tk. For this reason, we 

restricted ourselves to only growing social graph and friend lists. 

 

Figure 3. Cost of full recommendation compared to manual 



The next issue is how to measure the user effort required to grow 

friend lists generated using this model. One alternative is to ask 

each user to actually use each of the compared approaches. This is 

the approach used, for instance, in [9], where users were asked to 

create initial friend lists either manually or by editing generated 

friend lists. The experimenters found that the manual task was so 

tedious that few subjects completed it. This problem would be 

exacerbated in work that addresses evolution of friend lists, 

because each user would be required to evolve a friend list by 

different degrees. Therefore, we used an analytical approach to 

measuring user effort. 

When evolving friend lists or using recommended evolutions, the 

user can exert effort by adding or removing members of a friend 

list or recommendation. Therefore we approximated the cost of an 

approach as the total number of additions and deletions that 

would be required to transform the old or recommended friend 

lists to the ideal friend lists. We then compared approaches by 

comparing their total costs. If there are huge differences in the 

costs of two approaches, then we assume that a user study would 

show that users prefer the approach with the lower cost.  

This metric also captures the importance of the classical metrics 

precision, or the number of correct recommendations, and recall, 

or the number of times that recommendations are generated. If 

there is low precision, many of the recommendations will be 

incorrect and therefore the user will need to perform many 

additions and deletions during editing.  Moreover, if there is low 

recall, there will be many failed recommendations, and thus there 

will be many friend lists which will require manual evolutions, 

which will likely require many more additions and deletions.  

Therefore, if user effort is shown to be low in terms of the number 

of required additions and deletions, we assume the precision and 

recall will be sufficiently high such that the user does not become 

frustrated to the point to stop using the recommender system. 

Using the techniques for modeling evolution and user effort, we 

compared the full recommendation and manual approaches, which 

is shown in Figure 3. In this figure we plotted the average relative 

costs with bars marking values one standard deviation away. As 

shown, full recommendation performs better than manual in all 

cases except when the graph grew by 1%. This aligns with the 

results of previous work which showed the effectiveness of a 

recommender recommending friend list creation [2, 3, 9].  What is 

surprising is that such a recommender is also effective when the 

graph grows by a very small amount. 

5. CONCLUSION AND FUTURE WORK 
This paper has made multiple contributions. First of all, we have 

developed a design space of different approaches for 

recommending friend lists in social networks. This design space 

allows an easier comparison of past approaches and determination 

of which areas may be explored in future work.  

We have also identified how recommender engines may be 

applied to evolve friend lists.  To analyze this approach, we have 

identified a method for modeling social graph and friend list 

growth and identified metrics applicable towards gauging user 

effort.  Our results show that the full recommendation approach 

outperforms the manual approach by reducing required additions 

and deletions in all but the smallest of social graph growths. 

Our results are not limited to Facebook. To apply our techniques, 

a social network needs to be able to represent a user and his 

friends in a graph, with vertices representing individuals in the 

network, and edges representing connections between them. This 

social graph also needs to be able to evolve by at least allowing a 

user to add friends and connections to his social graph. 

Furthermore, the user must also be allowed to sort any of their 

friends into non-static friend lists. Renren, LinkedIn, and Google+ 

are additional systems fulfilling these requirements. 

Of course, our results have limitations. We have restricted our 

recommendations to friend list growth. It is important to model 

deletions, which can make certain friend lists disappear. In 

addition, full recommendation forces users to rename their friend 

lists for each evolution. We have not modeled the cost of such 

renaming, which may be significant in some cases. It may also be 

possible to predict how friend lists should change rather than 

predict a new set of friend lists, which may allow such a system to 

automatically associate names with the recommended friend list 

evolutions.  

We have only addressed evolutions in terms of the membership of 

friend lists. It may be possible to evolve access rights as the 

members evolve. Future work could address how to evolve rights 

alongside the social graph and friend lists. Our work provides a 

basis for investigating these unresolved issues. 
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