
Evolving Friend Lists in Social Networks
Jacob Bartel, Prasun Dewan

University of North Carolina
Chapel Hill, NC

{bartel,dewan}@cs.unc.edu

ABSTRACT

In a social network, users can sort members of their social graph

into friend lists to both understand the social structures within the

graph and control the flow of incoming and outgoing information.

To reduce the user-effort required to create these lists, previous

work has developed techniques for generating friend-lists in a

static social graph. This paper considers the user effort required to

create friend lists in an evolving graph. We have developed

several new initial quantitative metrics to capture this effort, and

identified an initial technique for modeling graph growth. We

have used these metrics and model to compare two techniques for

evolving friend lists when the social graph grows: manual

evolution – the user evolves friend lists using no external tools –

and full recommendation – an existing state of the art tool

recommends a whole new set of friend lists. In these

comparisons, we used the friend lists of 12 individuals, and

simulated the growth of their social graphs and friend lists using

our graph-growth model. Intuitively, when the graph evolves by a

small (large) amount, the manual (automatic) approach should

perform better. Our experiments show that full recommendation

performs better than manual when the social graph changes by

more than 1%, and yields an almost complete reduction in effort

in the best cases.

Categories and Subject Descriptors

H.5.3 [Information Systems] Group and Organization Interfaces

– computer-supported cooperative work, evaluation/methodology

General Terms

Algorithms, Management, Measurement, Experimentation,

Security, Human Factors.

Keywords

Evolution; social networks; Facebook; friend lists; refactoring.

1. INTRODUCTION
Currently, social network users have a large number of friends

with whom they share large amounts of information in a variety of

forms, such as posts, messages, photos, and links. One recent

statistic stated that the average Facebook user has 130 friends and

shares 90 pieces of content with those friends per month [8]. With

such broad and varied forms of communication, certain tasks

become difficult. A user must be able to organize their friends to

understand the social structures to which they belong, filter out

and sort incoming information, and control where outgoing

information is directed.

One approach to reduce this difficulty is to group users sharing

some characteristic(s) and apply the same information controls to

each member of a group., Several popular social networks today

allow an arbitrary number of friend lists as they are called in

Facebook (and tags, groups, or circles in Renren, LinkedIn, and

Google+). Previous studies have found that users either do not

know how to create these lists [13] or are not willing to put the

time and effort required to create them [3, 8, 9, 13]. In one health

study [10], people who wished to share their medical problems

with others did not use Facebook to do so because of the fear that

this information may reach unintended ears. This is consistent

with a more general problem of the high effort cost in access

control lists [10],

The question then becomes how to reduce the costs of creating

these friend lists. One approach is to create a recommendation

tool to generate these lists [2, 3, 6, 9]. With such a tool, the user

only has to approve, disapprove, or modify a recommended list

rather than learn how to create a list and then generate a list from

scratch, leading to significantly less learning and effort costs.

Previous research has shown that the cost of manually editing

recommended lists is a small fraction of the effort required to

manually create the lists from scratch. However, current friend list

recommendation tools make recommendations only when a friend

list is initially created [3, 6, 12], or are limited to

recommendations for two lists [7]. How this arbitrary number of

lists should evolve as the social graph changes has been explicitly

stated as an open problem by authors of these tools [2, 3, 9].

This paper takes a first stab at addressing this problem. It

identifies initial new quantitative metrics to capture the effort a

user has to exert to manually edit, accept, or reject

recommendations In addition, it derives an initial technique for

modeling graph growth It uses these metrics and model to

compare two approaches for friend list evolution: manual

evolution - the user evolves (manually or automatically generated)

friend lists using no tools and full recommendation – a state of the

art friend list recommendation tool is used to recommend a whole

new set of friend lists.

2. FRIEND LIST RECOMMENDATION

DESIGN SPACE
Our problem is a sub-problem of the general problem of finding

communities in a network of nodes [3]. Our focus is on

recommending classification of friends of a particular user into

(potentially overlapping) friend lists. There have been a variety of

diverse approaches to this problem in previous work. To combine

the ideas in these approaches and to better understand and

describe our own work, we have developed a design space of

friend list recommendations, which is a contribution in its own

right. These approaches can be divided into two broad schemes,

member suggestion [2, 12] and group creation [3, 6, 8, 9] .

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee. Request permissions

from permissions@acm.org.

RecSys’13, October 12–16, 2013, Hong Kong, China.

Copyright © 2013 ACM 978-1-4503-2409-0/13/10…$15.00.

DOI string from ACM form confirmation

Member suggestion recommends friends who should be added to

a new friend list. A user initially has an unpublished empty friend

list, for which a recommender suggests new members. From those

suggestions, the user selects appropriate additions to the friend

list. The user then may accept this list or request more

recommendations, forming a cycle in the work flow where each

iteration of the cycle requires user input. This process is then

carried out for other friend lists.

In group creation, the user starts with no friend lists. The

recommender suggests a set of new friend lists by determining

clusters within the user’s set of friends, each of which the user can

edit or reject. The edited friend lists are then published. As

opposed to the incremental member suggestion approach, which

may require user input multiple times for recommendations for

each friend list, the “batch” group creation approach requires user

input at only one point for all recommendations.

Recommendation schemes can be further categorized based on

how they group users. Again, there are two main approaches. The

first is property-based clustering, which clusters individuals based

on shared values of associated attributes such as age, sex, or

location. The second is connection-based, which clusters

individuals based on subsets of vertices in the social graph that

are highly connected. Each of these approaches has its strengths

and weaknesses. The property-based approach uses more

information, and thus, is likely give predictions that are at least as

precise as those of the connection-based approach. On the other

hand, because it is dependent on the individuals’ properties, it is

restricted to systems and users where these properties are

available and correct. Some systems may grant limited access to

these properties due to privacy or security reasons, and many

users may specify an incorrect or incomplete set of properties,

thus limiting this technique to subset of social networks.

These different techniques can be sorted into the design space,

shown in Figure 1. As indicated, there has been work in all points

involving member suggestion and group creation in this space.

3. FRIEND LIST EVOLUTION
Previous approaches offer recommendations only at a friend list’s

creation time. However, social networks can gain and lose

members and connections, which would require the evolution of

friend lists. Such evolution is not restricted to social networks. It

occurs in any system that can be improved or expanded while

retaining some of its old functionalities, and is often tool-

supported. For example, database refactoring systems restructure

databases as they grow to improve the architecture while retaining

the original information, and code refactoring systems update

code to improve organization and readability while retaining the

original behavior. Our contribution is to consider this issue in the

context of friend lists.

There are three ways that a social graph can change: members can

be added, members can be removed, and connections can be

changed. In this first cut at friend list evolution, we address only

adding individuals and connections to a user’s social graph and

friend lists. Thus, our work applies directly to only those users

who do not do “garbage” collection to delete connections or

regroup users in a social graph.

To illustrate this evolution, we introduce a running example

illustrated in Figure 2. In the past (time tk-1) Joe’s social graph

contained a 6 friends, Alice, Bob, Carol, David, Eva, and Frank,

and two friend lists, Research Group and Social Group (Figure 2

(a)). Between time tk-1 and tk, Joe’s company hired two people,

Greg and Hal, and Joe’s social graph grew to include them (Figure

2(b)). Joe also wants each of his friend lists to grow to include his

new friends (Figure 2 (c)).

One way Joe could reach these ideal lists is the manual approach,

where he determines what has changed in the social graph

between time tk-1 and tk and evolve the friend lists accordingly.

This approach has the possibility of being the most precise

because it takes all of a user’s intentions into account. However, it

requires significant work if the number of friends or friend lists is

significantly large or there are significant changes to the social

graph. Moreover, this approach requires that the user identify

changes between the different states of the social graph, which

may not be feasible if the social graph is significantly large or has

changed a significant amount.

Full recommendation uses a friend list recommendation tool, or a

recommender engine, to generate a new set of friend lists from the

evolved graph, which the user then edits and labels. As mentioned

earlier, friend list recommendation can be divided into member

suggestion and group creation. Each of these approaches has its

pros and cons in terms of group evolution. To illustrate, we

Figure 2. Design space of friend list recommendations

Member

Suggestion

Group

Creation

Group

Evolution

Property

Based

Connection

Based

Amershi, 2012 Facebook Smart

Lists

Roth, 2012

Bacon et al, 2010

Friggeri et al, 2011

Liu et al, 2012

MacLean et al, 2011

Friend list

evolution

Friends

Friend lists

(a) Social graph members and friend lists at time tk-1 Friend lists

(b) Social graph members at time tk

(c) Ideal friend lists at time tk

 A =

 B =

 C =

(d) Recommender engine results at time tk

Figure 1. Example of friend list growth

 Alice Eva Frank Greg

 Alice Bob Frank Carol Greg

 Alice Bob Carol Greg Hal

David Carol Bob Alice

Hal Greg Frank Eva

Research Group’

 Alice Eva Frank Greg

Social Group’

 Alice Bob Frank

Hal

David Carol

Bob Alice

Frank Eva

Research Group

 Alice Eva Frank

Social Group

 Alice Bob Frank

continue with our running example where the social a

recommender engine generates the new friend lists in Figure 2(d).

Consider the scenario where Greg and Hal are added to Social

Group and Research Group remains unchanged. In general,

member suggestion, the user may first unnecessarily ask for

recommendations for Research Group. Alternatively, group

creation may only present the user recommended changes to

Social Group. If the recommendations made using member

suggestion and group creation are both perfectly effective, then it

can be assumed that in group creation a user will only handle

friend lists that change, leading to possibly fewer steps.

However, group creation cannot use feedback to adjust

recommendations, while member suggestion’s iterative nature

allows feedback throughout the recommendation process, which

can be used to improve future recommendations. Consider the

situation in which Greg and Hal should be added to Research

Group and Social Group, respectively. Let us assume that

without user feedback, both approaches predict the incorrect list

for each user. After the user overrides its first wrong suggestion,

member suggestion can correct its second prediction. Group

prediction would require the user to correct both predictions.

In this paper, we focus on group creation because it has been

more extensively covered by past work (including our own). We

present the intuitive analysis above to show that it would be

useful to also look at member suggestion in future work.

Thus, in our comparison of the two evolution approaches, manual

and full recommendation, we assume that the recommender

engine uses group creation. Assuming such an engine is effective,

which has been shown to be true in past work by ourselves and

others, full recommendation could work better than the manual

approach. However, the recommender engine may reintroduce

previously rejected recommendations – a cost not incurred in the

manual approach. Thus, it is difficult to predict which of these

approaches will require less effort. If the social graph has changed

by a small amount, the effort required to manually add the

members might be less than that required to correct and label the

predictions of a friend list recommender.

4. EVALUATION AND ANALYSIS
In order to test our scheme, we analyzed a variety of methods for

evaluating our work. The first option we investigated was to

generate artificial networks. However, such an option may not

match reality. The most realistic option, of course, is to use a field

study observing how users actually evolve their friend lists.

However, such a study would possibly take years to complete and,

more importantly, due to the limited control it allows, it would be

unable to compare different approaches using the same users. A

third option would be to perform a lab study at a single point of

time. Such an approach, however, requires us to model friend list

and social graph growth.

This is the approach we took. We used data from a previous study

in which 12 users were asked to create friend lists from their

current social graph [3], and generated previous evolutions of

friend lists and social graphs. There has been a large amount of

work on modeling future graph growth, but little done to model

how a graph may have grown to its current state.

We looked at these various alternative approaches to modeling

future graph growth to see if any are applicable to our own

problem domain. One such approach, which is used for modeling

remote sensor networks, randomly distributes nodes on a plane or

three-dimensional surface. Then based on the how close two

nodes are to each other, an edge may be formed between the two

nodes [5]. This approach is not compatible with our domain as

edges are not dependent on the closeness of the nodes they are

connecting. In a social graph, two nodes that are a large distance

apart when plotted geometrically may still have an edge

connecting them, or, similarly, two nodes that have a small

geometric distance may not have an edge between them.

There has also been work modeling graph growth based on the

power law, which states that the number of nodes with degree d is

proportional to the value 1/dα where α ≥ 0. Using this relationship,

when a vertex is added to a graph at time t, it will connect to some

existing vertex with probability dv,t/2et where dv,t is the degree of

vertex v at time t and et is the number of edges at time t [1, 4].

Existence of the power law has been shown in large graph

representations, such as citation networks [11] or collaboration

graphs of movie actors [4] and thus such graphs have been

effectively modeled using the above technique. However, smaller

graphs have been shown to be more difficult to approximate with

the power-law [4], and since our graphs are only one-hop sub-

graphs of the global social graph, our graphs are not large enough

to be appropriately modeled using the power-law. Moreover, upon

analyzing our user study data, the social graphs for our users did

not display an adherence to the power law.

Because of the failure of these modeling techniques to map to our

problem domain, we used a randomized approach to model past

graph evolution. To model an evolution at time tk-1, we assumed

there is a set of new members (Mnew,k) for our social graph at time

tk (Sk)., where each of these new members would have been added

to the social graph after time tk-1. We can then subtract this new

set of members from the social graph (Sk) and friend lists at time

tk (Fk) to find the respective Sk-1 and Fk-1.

With this model of group growth, we can model the growth of

both the social graph and friend lists between time tk-1 and tk and

vary growth rates by adjusting the size of Mnew,k. Specifically, we

modeled these growth rates as a proportion of the size of global

social graph by defining a proportion p = |Mnew,k|/|Sk| and varied p

over a wide range of values as shown in Figure 3’s x-axis.

This approach is limited in that it cannot model member deletion.

Because we only have friend lists and social graphs from a single

time slice, our data does not give us any information of

individuals that are currently missing from the Sk but were

contained in some previous Sj where tj < tk. For this reason, we

restricted ourselves to only growing social graph and friend lists.

Figure 3. Cost of full recommendation compared to manual

The next issue is how to measure the user effort required to grow

friend lists generated using this model. One alternative is to ask

each user to actually use each of the compared approaches. This is

the approach used, for instance, in [9], where users were asked to

create initial friend lists either manually or by editing generated

friend lists. The experimenters found that the manual task was so

tedious that few subjects completed it. This problem would be

exacerbated in work that addresses evolution of friend lists,

because each user would be required to evolve a friend list by

different degrees. Therefore, we used an analytical approach to

measuring user effort.

When evolving friend lists or using recommended evolutions, the

user can exert effort by adding or removing members of a friend

list or recommendation. Therefore we approximated the cost of an

approach as the total number of additions and deletions that

would be required to transform the old or recommended friend

lists to the ideal friend lists. We then compared approaches by

comparing their total costs. If there are huge differences in the

costs of two approaches, then we assume that a user study would

show that users prefer the approach with the lower cost.

This metric also captures the importance of the classical metrics

precision, or the number of correct recommendations, and recall,

or the number of times that recommendations are generated. If

there is low precision, many of the recommendations will be

incorrect and therefore the user will need to perform many

additions and deletions during editing. Moreover, if there is low

recall, there will be many failed recommendations, and thus there

will be many friend lists which will require manual evolutions,

which will likely require many more additions and deletions.

Therefore, if user effort is shown to be low in terms of the number

of required additions and deletions, we assume the precision and

recall will be sufficiently high such that the user does not become

frustrated to the point to stop using the recommender system.

Using the techniques for modeling evolution and user effort, we

compared the full recommendation and manual approaches, which

is shown in Figure 3. In this figure we plotted the average relative

costs with bars marking values one standard deviation away. As

shown, full recommendation performs better than manual in all

cases except when the graph grew by 1%. This aligns with the

results of previous work which showed the effectiveness of a

recommender recommending friend list creation [2, 3, 9]. What is

surprising is that such a recommender is also effective when the

graph grows by a very small amount.

5. CONCLUSION AND FUTURE WORK
This paper has made multiple contributions. First of all, we have

developed a design space of different approaches for

recommending friend lists in social networks. This design space

allows an easier comparison of past approaches and determination

of which areas may be explored in future work.

We have also identified how recommender engines may be

applied to evolve friend lists. To analyze this approach, we have

identified a method for modeling social graph and friend list

growth and identified metrics applicable towards gauging user

effort. Our results show that the full recommendation approach

outperforms the manual approach by reducing required additions

and deletions in all but the smallest of social graph growths.

Our results are not limited to Facebook. To apply our techniques,

a social network needs to be able to represent a user and his

friends in a graph, with vertices representing individuals in the

network, and edges representing connections between them. This

social graph also needs to be able to evolve by at least allowing a

user to add friends and connections to his social graph.

Furthermore, the user must also be allowed to sort any of their

friends into non-static friend lists. Renren, LinkedIn, and Google+

are additional systems fulfilling these requirements.

Of course, our results have limitations. We have restricted our

recommendations to friend list growth. It is important to model

deletions, which can make certain friend lists disappear. In

addition, full recommendation forces users to rename their friend

lists for each evolution. We have not modeled the cost of such

renaming, which may be significant in some cases. It may also be

possible to predict how friend lists should change rather than

predict a new set of friend lists, which may allow such a system to

automatically associate names with the recommended friend list

evolutions.

We have only addressed evolutions in terms of the membership of

friend lists. It may be possible to evolve access rights as the

members evolve. Future work could address how to evolve rights

alongside the social graph and friend lists. Our work provides a

basis for investigating these unresolved issues.

6. ACKNOWLEDGEMENT
This research was supported in part by NSF grant IIS-0810861.

We thank the reviewers for their in-depth comments.

7. REFERENCES
[1] Aiello, W. et al. 2001. Random Evolution in Massive

Graphs. Proc. FOCS. (2001).

[2] Amershi, S. et al. 2012. ReGroup: Interactive Machine

Learning for On-Demand Group Creation in Social

Networks. Proc. CHI (2012).

[3] Bacon, K. and Dewan, P. 2011. Mixed-Initiative Friend-

List Creation. Proc. ECSCW (2011).

[4] Barabási, A.-L. and Albert, R. 1999. Emergence of scaling

in random networks. Science. 286, (1999), 509–512.

[5] Dowell, L.J. and Bruno, M.L. 2001. Connectivity of

random graphs and mobile networks: validation of Monte

Carlo simulation results. Proc. SAC (2001).

[6] Friggeri, A., G. Chelius and Fleury, E. 2011. Triangles to

Capture Social Cohesion. The Third IEEE International

Conference on Social Computing (2011).

[7] Hannon, J. et al. 2010. Recommending twitter users to

follow using content and collaborative filtering

approaches. Proc. RecSys (2010).

[8] Liu, Y. et al. 2012. Simplifying Friendlist Management.

Proc. WWW (2012).

[9] MacLean, D. et al. 2011. Groups without tears: mining

social topologies from email. Proc. IUI (2011).

[10] Newman, M.W. et al. 2011. “’It’s not that I don’t have

problems, I’m just not putting them on Facebook’:

Challenges and Opportunities in Using Online Social

Networks for Health”. Proc. CSCW (2011).

[11] Redner, S. 2004. Citation statistics from more than a

century of physical review. Technical Report #0407137.

physics.

[12] Roth, M. et al. 2010. Suggesting Friends Using the Implicit

Social Graph. Proc. KDD (2010).

[13] Skeels, M. and Grudin, J. 2009. When Social Networks

Cross Boundaries: A Case Study of Workplace Use of

Facebook and LinkedIn. Proc. Group (2009).

