
Towards Composable Prediction of Contact Groups
Andrew Ghobrial, Jacob W. Bartel, Prasun Dewan

Department of Computer Science
University of North Carolina

Chapel Hill, NC USA
{andrewwg, bartel, dewan}@cs.unc.edu

Abstract—Users’ contacts often need to be grouped into
equivalence classes for various purposes such as easily sending a
message to all members of the group. Several approaches have
been recently developed to make such predictions (a) for both
ephemeral and persistent groups (b) in both email and social
networks systems. However, no research has attempted to
compare these approaches or compose them by using ideas of one
in another. We have taken a step in this direction. We have
developed and compared multiple approaches to predicting
persistent contact groups in email. These approaches compose an
algorithm that generates friend lists in Facebook from a social
graph with different techniques for generating the social graph.
One of these techniques is based on a scoring algorithm used by
Google to predict ephemeral groups incrementally. To compare
the approaches we ran a user study involving 19 participants and
used two simple metrics that calculated the average percentage
difference between a predicted group and the group of addresses
in a future message. The evaluation showed that using the Google
score was the best approach though it offered very small
improvements over all but one of the simpler methods.

Keywords-email; prediction; user-groups

I. INTRODUCTION
Users’ contacts often need to be grouped into equivalence

classes for various purposes such as sending a message to the
group; sharing files, posts, or photos with the group; filing
messages related to the group; and understanding the social
networks to which users belong [2]. Therefore, a variety of
systems such as social networks, email, and file and database
systems allow users to create these classes.

However, in order to use these classes or groups, users must
first incur the cost of identifying and creating these groups.
Research has shown that few groups are actually created by
users in a variety of systems, such as Facebook [2, 15], email
[9, 14], and mobile phones [8]. As past work has observed,
there are many reasons users may fail to create these groups.
For example, users may not understand how to create groups
[11] or they may find the process of creating groups tedious,
difficult, or time-consuming [11, 14].

As a result, a variety of research efforts have developed
algorithms for recommending both ephemeral and persistent
groups of users in a variety of systems [1, 2, 4, 6, 7, 9, 10, 12,
14, 16]. These efforts are exciting because they allow us to
show that automatic prediction offers substantial benefits over
manual composition of these groups. However, no research has

attempted to compare these different prediction techniques or
compose them by using ideas of one in another. In this paper,
we describe an initial step in this direction.

A large number of compositions are possible even with the
relatively small number of approaches addressing this
emerging area. Arguably, the two most diverse of these are (a)
an approach developed by Bacon and Dewan [2] that uses
friend relationships in Facebook to recommend persistent
groups in “batch” without using any information about the use
to which these groups are to be put, and (b) an approach
developed by Roth et al [14] and implemented in Gmail that,
given a specific email and a set of known correct recipients,
incrementally predicts candidates for the next recipient. We
utilized (parts of) these two approaches to make a new kind of
prediction: prediction of persistent named contact in email,
thereby meeting the composition requirement. To meet the
comparison requirement, we composed the Facebook approach
with two simpler versions of the Google approach and
compared all three compositions to determine the usefulness.

Our work required us to address several new issues:

• How exactly should the Facebook and Gmail approaches
be composed?

• What are some simpler but potentially useful versions of
the Google approach that could be used for the
comparisons?

• How should we determine values of tunable parameters of
the composed approaches?

• What criteria should be used to compare the approaches?
• What are the results of the comparison?

In the rest of the paper, we address these issues. In the
following section we overview existing group-prediction
techniques. Next, we motivate and describe the three
compositions. Then we describe how we tuned our parameters
and made our comparisons. Finally, we present conclusions
and directions for future work.

II. RELATED WORK
There are a variety of approaches that mined and/or

recommend groups of users for a variety of systems [1, 2, 4, 6,
7, 9, 10, 12, 14, 16]. Of these approaches, some have focused
on groups to be used for roles in role-based access control [16],
some have focused on groups in social networks such as
Facebook or Google+ [1, 2, 4, 7, 10], and a few have focused
on groups in email [6, 14].

Only some of these approaches [1, 2, 4, 7, 9, 10, 16] have
recommended groups directly to users so that users may edit
and label the groups. Other approaches have mined groups for
the understanding and organization of networks [6, 12]. One
approach developed by researchers at Google does not pre-
create the groups, but rather suggests a user to add to the
recipient list one at a time based on groups it automatically
identified [14]. This work was even expanded later to use these
automatically identified groups to automatically group
recommended recipients of a message into a hierarchy [3].

Figure 1. Gmail recipient recommendation interface

Our research focuses on prediction of persistent groups in
email. E-mail is one of the most prevalent forms of
communication on the Internet. It is estimated that in 2013,
around 183 billion e-mail messages were sent per day [13],
many of which were addressed to several recipients. Instead of
addressing each recipient, many systems such as Gmail,
Microsoft Outlook, or Mozilla Thunderbird allow users to
address messages to groups of recipients.

However, in order to use these groups, users must first
incur the cost of identifying and creating groups. One way to
reduce this cost is by automatically recommending the e-mail
sender with groups based off the users' past e-mail exchanges.
For example, if a user regularly communicates with their
parents and grandparents together via email, an algorithm
should detect this strong link between the user, their parents,
and their grandparents, and thus present them as a group
suggestion. This group of parents and grandparents can then be
used both to address new email messages in the future and to
filter new incoming messages by performing an action such as
sorting them into a folder called “Family”.

This recommending of groups does not come without costs
to users. Once users are presented with a suggested group they
must assign a label, such as “family”, to the group and possibly
make modifications to the membership of the group in the form
of adding or deleting certain recipients. For example, the
algorithm might only have suggested a user’s parents and
grandparents, but the user may also want to include his/her
siblings. Alternatively, the user may choose to reject the group
entirely if he/she feels that it will not be useful in the future.

The best prediction algorithms will produce groups that are
least likely to be rejected by the user. Moreover, of the groups
that are accepted by the user, ideally the user should have to
make the least additions or deletions.

However, determining the best algorithms requires a
comparison of alternative approaches. Moreover, to carry this
field forward, it is important to understand the similarities
between them so that we can differentiate between components
that are competing alternatives and those that are
complementary and thus can be composed. However, most of

the research mentioned above was done independently and
more or less contemporaneously, without considering other
work with similar goals.

Composition and comparisons both require identification of
similarities and differences between these approaches. To our
knowledge, all approaches providing automatic group
identification have required graphs representing relationships
between users or recipients in order to identify groups. In these
graphs, nodes represent users or recipients, and nodes have
edges between them if the respective users or recipients have a
relationship. These graphs are then mined to determine groups.

Thus, past work in automatic group identification can be
organized into a two-dimensional design space. One dimension
is the method for creating graphs, and the second dimension is
the method for mining graphs. Past work has covered a variety
of portions of each of these dimensions.

In some cases, forming the required graphs is a relatively
simple task. For example, consider the domain of social
networks including Facebook and Google+. To form graphs,
users of a social network can be represented as nodes, and if
two users are explicitly linked (such as by being friends on
Facebook or being contained in each other’s circles on
Google+), an edge is created between them in the graph.
However, in systems such as email or file systems, this is made
more difficult by the lack of clear relationships between users.
Users are merely implicitly linked by being addressed in the
same e-mail exchange or have access to the same file.
Therefore, past work has used many different approaches for
creating graphs. For example, some of these approaches [6, 9,
14] create edges between two users if they are recipients of
some of the same email messages, but drop edges if the
messages were not sent recently enough or were not included
in enough messages together.

Past work has also employed a variety of approaches to
predict these groups. It has used gradient ascent to form groups
that are most likely to exist given the current graph [10] or
identified small candidate groups in the graphs such as
individual nodes or maximal cliques, and merged candidates
based on the distances between them, such as Jaccard similarity
[9], cohesion [7], or required additions and deletions [2, 4].

Despite the wide coverage of this design space of automatic
group identification, when restricted to the domain of email,
the design space has significantly less coverage. In fact, to our
knowledge only MacLean et al. [9] have automatically
identified persistent groups that are then presented to the user.
They determined candidate groups such as unique recipient sets
(or the union of the TO, CC, and BCC fields) from past sent
messages. They then removed any candidate groups that were
only included in a small number of messages according to
some threshold and merged groups that either led to an
information leak less than some threshold or had a Jaccard
similarity above some threshold.

As we see above, both the creation and mining of the graph
is email-specific in that it uses messages addresses to both
determine the graph and mine it. Thus, it is not clear how this
approach should be composed with other approaches to

recommend persistent groups that are based on friend
relationships rather than users addressed in email together.

Based on the discussion above, however, the reverse is
possible. It is possible to use email-specific information to
create a social graph that is then mined using a recommender
for friend lists. This is the composition approach we took,
discussed in more depth below.

III. APPROACH
The Facebook mining algorithm we used is called Hybrid

Clique Merger [2, 4] and shown in Figure 2. It finds the
maximum cliques in the graph where a clique is a set of
vertices in which each vertex is connected to every other vertex
by an edge. Overlapping cliques are combined to form large
groups called networks in the graph. Networks containing more
than 50 members are treated as their own subgraph. Subgroups
are then found by finding maximal cliques in the subgraph and
merging them.

In this algorithm, the more strongly connected a set of
vertices is to each other, the more likely that a group containing
these vertices will be recommended. For example, if three
Facebook users were all friends with each other, a group would
be recommended containing all three. If the three friends were
also strongly connected to another friend, he/she would also be
included in the group.

Since this approach was designed and originally tested in
social networks, successful group prediction in email may
imply a strong link between groups in email and social
networks. Thus, if we are able to make successful group
predictions in email with this approach, it leaves open more
directions for future work to cross-pollinate concepts involving
groups in email and social networks.

However, as mentioned previously, the use of this approach
in email is made difficult by the lack of clear relationships
between recipients. Recipients are only linked because they are
merely addressed in the same e-mail exchange (as compared to
the clear user to user friend relationships on Facebook and
other social media sites).

Thus, our next step was to determine an effective way to
generate a graph that will produce optimal groups. Keeping
with our goal of comparing different points in the design space

of automatic group detection, we designed, implemented, and
studied three different graph generation algorithms, described
in the three subsections below.

A. Simple Graph Generation:
 This approach works by using every past email

message. For each message, a vertex in the graph is created
representing a collaborator in the message. A collaborator is
either a sender or recipient of the message. An edge is then
created between every pair of people listed as collaborators of
the message. Thus, an edge represents a connection between
two people, and a connection is created for each pair of users
involved in a message. For example, consider the following
message recipients:

From: james@univ.edu

To: alice@cs.univ.edu, zach@cs.univ.edu

The vertices "james@univ.edu", "alice@cs.univ.edu",
and "zach@cs.univ.edu" are created. The following edges are
also created:

- ("james@univ.edu" <--> "alice@cs.univ.edu")

- ("james@univ.edu" <--> "zach@cs.univ.edu")

- ("alice@cs.univ.edu" <--> "zach@cs.univ.edu")

A total of ! (!!!)
!

 edges are created for a message with n
collaborators. Thus the number of edges increases on the order
of 𝑂 (𝑛!). A potential downside of this approach is that it does
not take into consideration the age of the message.

B. Simple Threshold Graph Generation:

This graph generation works similarly to the above, but also
takes in as parameters a threshold age in milliseconds and a
date argument. In determining whether to use a message in the
graph, the algorithm checks to see if the date of the message is
more than the threshold age before the date passed in as an
argument.

This filtering of past messages is represented by Figure 3.
The right, blue area represents the size of the threshold age (in
milliseconds). Any message in the left red area is a message
that is considered too old to be useful in generating groups and
is thus completely ignored in generating the graph and groups.

C. Google Scoring Algorithm:
This next algorithm meets our goal of composing work

from both Facebook and email group prediction. It is based on
Gmail’s recipient recommendation algorithm [14]. In this
algorithm, the next set of recipients is recommended based on
an automatically constructed graph. In this graph, nodes
representing recipients or groups of recipients have weighted

Within Threshold Older Messages (ignored)

All past messages

Figure 3. Simple Threshold illustration

Figure 2. Hybrid Clique Merger approach

edges in between them based a score called Interactions Rank
(IR). This score is computed based on a formula that factors in
the half-life of a message and whether it was sent or received in
order to create a score for each edge. The formula, shown
below, then sums the weights of these messages.

𝐼𝑅 = 𝜔!"#
!
!

!!"#!! !
!

!∈!!"# + !
!

!!"#!! !
!

!∈!!" 	

In this formula, 𝑀!"# is the set of past sent messages, 𝑀!" is
the sent of past received messages, 𝑡 𝑚 is the time of message
m, 𝑡!"# is the current time, 𝜆 is a half life weight, and 𝜔!"# is a
sent message weight.

We compose the Google approach with the (Hybrid) Clique
Merger by using this Google core, not to compute the weighted
graph used for recipient prediction but to compute an un-
weighted graph to be mined by the Clique merger. Thus, our
(version of the) Google Scoring Algorithm uses the half-life of
a message and whether it was sent or received in order to create
a score for each edge in the Clique Merger graph. Therefore,
unlike the Simple Graph Generation algorithm, it takes into
account time, and unlike the Simple Threshold Graph
Generation algorithm, it takes into account whether a message
is sent or received and treats older messages as less important
rather than ignoring them entirely.

This algorithm starts by created a weighted graph in which
each edge is assigned a score using the above formula. After
the algorithm finishes creating the weighted graph, it converts
the graph into an un-weighted graph by dropping edges below
a certain threshold. The intuition behind this approach is that
older edges are assigned a decreasingly smaller edge weight
instead of using a hard cut-off as with the Simple Threshold
algorithm. For example, consider two collaborators of a
message, Alice and Zach, and a half-life of one week. If one
message occurred 1ms ago between them, the weight score
from this message would be 1. If a message were also sent
between Alice and Zach one week ago, then the weight score
from this earlier message would be 0.5. The new weight of the
edge between Alice and Zach would be the sum of the weights
for the two messages, or 1.5.

IV. STUDY

A. Data Collection Framework
We needed data to not only compare these three

approaches, but also determine appropriate values for their
tunable parameters. As our goal is to predict persistent groups
from email histories, we created a framework for collecting
email histories without compromising the privacy of the
subjects. We created a tool that collected e-mail message data
anonymously in the format shown in Figure 4.

In this format, each line represents a single e-mail message.
Each message is given a Message Id and Thread Id. Also
collected is the From Id, set of Recipient Ids and the received
date of the message. After users log in with their e-mail address
and password, a preset amount of the most recent e-mail
messages is collected in this anonymous format from their
accounts. Note that each From Id and Recipient Id represents
an actual e-mail address in the header of the message such as
james@univ.edu. Recall that the received date is used in

determining the importance of older messages relative to more
recent ones.

We wrote a parser to create a Message object for each line
in the file containing the message properties discussed above.
Thus, when given the above file as input, a List<Message>
object is returned containing all the Message objects. This
object contains all the data we require to recommend the set of
groups for a particular user.

The email collector accepted both Gmail and Microsoft
Outlook/ Live addresses because both are commonly used by
undergraduate students, graduate students, faculty, and staff at
our institution. It gave users the option of recording private
email addresses, in which case the actual Id to e-mail address
mappings were collected and stored in a separate, secure file,
the format of which is shown in Figure 5.

The file allowed us to manually evaluate our own groups by
seeing if they make sense logically in lieu of running the
testing algorithm described later. This file was also parsed and
stored as a Map<Integer, String>. We then created the graph
using the Strings of the actual e-mail addresses. If private data
was not available, we simple created the graph using the String
representation of the integer.

B. Automated Data Collection
Past work on persistent groups that involved users to

manually create or edit groups has reported that many subjects
were not willing to put in this effort In particular, MacLean et
al. [9] indicated that the vast majority of subjects did not
manually create their own groups, and Bacon and Dewan [2]
report that only about half of the subjects edited the groups that
were predicted automatically, though those that did found this
effort to be small. Therefore, we decided to run a fully
automated study, using objective metrics, that involved no user
effort beyond going to a web link, signing an IRB consent
form, choosing the options, and entering email id and
password. In response to our announcements about the study,
we were able to collect data from 19 participants. For each
user, up to 400 threads containing a total of up to 2000
messages were collected. These values were picked so that as
many e-mail messages for each thread are collected as possible.
On average between 500 and 600 messages were collected
from each user using these parameters. The users were mostly
undergraduate students at our university.

Figure 4. Format of anonymous email message data

Figure 5. Format for mapping anonymous ids to email

addresses

C. Determining Constants and Thresholds
As mentioned earlier, in order to effectively apply the graph

creation approaches we previously described, we had to first
determine appropriate weights and thresholds for some of the
approaches. In the case of the Simple Threshold Graph
approach, we needed to determine an effective time threshold.
In the case of the Google Scoring Algorithm, we needed to
determine an effective weight for sent messages, half-life
weight, and threshold for edge scores. These values are not
reported in the paper that introduced this algorithm [14].

For the Simple Threshold Graph approach, we considered
the thresholds of 1 hour, 1 day, 1 week, 2 week, 1 month, and 2
months in pilot testing. We generated groups from our own e-
mail accounts with these thresholds and checked their
usefulness. We found that groups generated with a 1 hour, 1
day, or 1 week threshold were unlikely to produce any useful
groups. This is reasonable because 1 hour or 1 day is not a long
enough time period to be able to generate persistent groups that
are useful in the long term. Based on these findings, we chose
the thresholds of two weeks, one month, and two months to
further test using the data collected from the user study.

The Google Scoring Algorithm required us to pick three
constants: a half-life, a sent constant, and an edge weight
threshold at which to drop edges. In order to find the best
combination of these constants, one could simply perform a
brute force search across all possible combinations of all
possible values of these constants. However, given that there
may be many possible values for each of these constants, such
a search is not practical. Moreover, the large number of tests
we would need to run predicting groups using all possible
constant values would make it likely that our results were good
based on chance rather than having found an effective set of
constants to predict groups.

Therefore to set each of these three parameters, we
performed tests using our own data. In these tests, we only
varied one chosen parameter and fixed the other two values.
This allowed us to determine the effect of changing the chosen
parameter on the edge weight distributions and therefore select
an acceptable value. A parameter is not very useful if it has
little effect on the distribution. In other words, if it yields edge
weights such that a vast majority of weights are close to each
other - edges with close weights would be included or excluded
together.

We evaluated this effect of different parameter values using
a cumulative distribution function (CDF) plot of edge weights.
In this plot, possible edge weights are along the X axis and the
percentage of edges having a weight less than or equal a given

weight are along the Y axis. We then displayed multiple,
different colored plots on a single graph, where each plot
corresponds to the CDF of edge weights for a chosen parameter
value. If the CDF for a specific parameter value is more
towards the upper left-hand corner or the lower right-hand
corner of the plot, then there is little variation in edge weights,
meaning it is likely not possible to determine a good edge-
dropping threshold. If it is in the upper left-hand (lower-right
hand) corner, most of the edges have a small (large) weight;
and the edge weight threshold parameter would not be very
good at discriminating among the edges, regardless of its value.

To test half-life constants, we considered half-lives of 1-
hour, 1-day, 1-week, 2-weeks, and 1-month. The CDF plot of
the edge scores using these half-lives and a sent constant of 1
are shown in Figure 6. As the figure illustrates, both 1-hour and
1-day half-life constants have CDF that are close to the upper
left-hand corner of the graph. As mentioned previously, this
indicates that there is little variation in edge weight and
therefore it may not be possible to specify an effective
threshold. Comparatively, the 1-week, 2-weeks, and 1-month
half-life constants were more towards the center of the graph,
indicating a greater variation on edge weights and a better
possibility of choosing an effective threshold. Therefore, we
chose the second, more successful, set of values in our group
evaluation described later.

To analyze the sent constants, we performed a similar
analysis using a fixed half-life of one week and sent constants
of 1/16, 1/8, 1/4, 1/2, 1, 2, 4, 8 and 16. A sent constant of 2
means that sent messages edges are given twice the weight.
Intuitively, a message that is sent should be given more
consideration when generating groups than a message that was
received as it defines a group from the point of the sender – the
user for who the groups are being predicted - rather than the
receiver.

As demonstrated by the CDF plot in Figure 7, there was
very little variation in the edge weights across any of the sent
constants. This indicates that changing the sent constant has
little effect on the edge weights in the graphs we constructed.
Based on this limited effect, we then decided to use 1 as the
value of this parameter, which means sent messages are equally
important as received messages in predicting groups.

Finally, we needed to answer the question, "at what point
do we drop edges?” To do so, we fixed the sent constant as 1
and the half-life constant as 1-month, which was one of our
successful approaches. The CDF of the edge weights of these
constants is shown as the dark blue plot in Figure 6, which is
the rightmost distribution in Figure 6

As the figure shows, there are a few elbows in the graph, or
points at which there is a stark change in the derivative. In
particular, the first of these elbows occurs at approximately
0.25. Before this point, the value and derivative is close to 0,
indicating there are some, but relatively few, edges below this
threshold. Because the number of edges with thresholds higher
than 0.25 increases after this point, it is likely that the edge
weights below this points are heavily influenced by noise rather
than any meaningful signal. Moreover, since the edge weights
are likely noise, the edges themselves are likely noise. Since
the goal of the threshold is drop superfluous edges, we chose
0.25 as our edge weight threshold to drop these likely noisy
edges.

Our next task was to define metrics for comparing the three
schemes. Previous research has used two approaches for
evaluating how much effort automatic group prediction saves
over manual group composition: (a) a subjective evaluation of
the effort saved based on task completion time and user
interviews [9], and (b) an objective evaluation of the effort
saved by asking subjects to morph predicted lists into ideal lists
and measuring the number of edits required in this task. As
mentioned earlier, both evaluations were heavyweight in that

they involved significant effort, which several of the recruited
subjects were not willing to put in.

As we were predicting in email, we essentially had data
about ideal lists through the users grouped in email messages.
We developed metrics based on these data that attempted to
compute the benefit of using predicted groups in future
messages, that is, messages generated after the groups were
predicted.

D. Training and Testing Sets
Thus, computation of these metrics involves prediction of

groups based on certain messages and then determining how
well these groups work for messages generated after the
prediction. We used the standard approach of dividing each
user’s messages into training and testing sets.

However, we could not divide the data arbitrarily as the
training messages must occur chronologically before the testing
messages. In a realistic scenario, users would use our
prediction schemes to generate groups based on past messages
for use in future messages. If our results are to match reality,
our predictions must mirror such a scenario. For this reason, we
could not perform k-fold cross validation. With multiple
passes, in some passes, some tests messages would occur
chronologically before training message. Even if such tests
resulted in effective group prediction for the test messages, it is
not clear that they would match reality,

Therefore, for each user, we sorted each participant’s list of
messages in chronological order. Each participant’s messages
were split into a training and test set. The training set contained
the first 80% of messages and the testing set contains the
remaining 20% of messages. The algorithm predicted groups
using the training set, and we then evaluated the usefulness of
the predicted groups when applied to the testing set.

We defined two metrics: a group-centered metric and a
message-centered one.

E. Group-Centered Evaluation Metric
This metric attempts to find how useful a predicted group is

in some future message, that is, a message sent after the group
is predicted.

For each group, g, we computed the distance of each
message to the group. For our purposes, distance was measured
as the number of edits (additions/deletions), required to
transform the message collaborators (sender + recipients) to the
group. We chose this definition of distance, because it matches
Bacon and Dewan’s [2] model of how users edit members of
recommended groups with additions and deletions.

Based on this distance measure, we found the message, m,
with the minimum distance. We divided this minimum distance
by the number of collaborators in m to give the cost of using
the group in the best message. This computation is described
by the following equation, with g being a predicted group, and
M be the set of test messages.

𝐺𝑟𝑜𝑢𝑝𝐶𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑀𝑒𝑡𝑟𝑖𝑐 𝑔 =
𝑚𝑖𝑛!"#𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑔,𝑚)
𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑜𝑟𝑠(𝑚)

Figure 7. CDF for same half-life, various sent-constants

Figure 6. CDF for same sent-constant, various half-lives

For each approach, we computed the mean value of all
predicted groups for the approach. The closer the group-
centered metric is to 0, the more effort saving the prediction of
the group offers in comparison to manually creating the group
of collaborators in the message. However, if the metric is
greater than one, the group is useless since for all the messages
it takes fewer (insert and delete) operations to manually enter
the recipients than use the group.

F. Message-Centered Evaluation Metric
The value of the metric above would be high even if a

group is used in a single message. Thus, if there are G
predicted groups and M future messages, and M >> G, then the
groups could conceivable be useful for only G of M messages.

Therefore, in addition to the group-centered evaluation
metric, we used a message-centered evaluation metric, which
evaluates on average how close the best group is to each future
message. In this approach, we are testing the usefulness of the
best group for each message (the reverse of section group-
centered). For each message, m, we found the distance of each
group from the message. Again, distance was the number of
edits (additions/deletions), required to transform the message
collaborators (sender + recipients) to the group. We then found
the group with the minimum closeness. This minimum
closeness was then divided by the number of collaborators in
m. Thus, this metric gave us the relative cost of using the best
group in the message. Again we represent this with an
equation, where m is a message and G is the set of predicted
groups:

𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝐶𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑀𝑒𝑡𝑟𝑖𝑐 𝑚 =
𝑚𝑖𝑛!"#𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑔,𝑚)
𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑜𝑟𝑠(𝑚)

As with the group-centered metric, for a given approach,
we computed the mean value for all test messages. This was
then used as the message-centered metric for that approach.
Again, if this value is higher than 1, the predicted groups
requires more effort than manually addressing messages.

Both metrics are useful. As mentioned above, unlike the
group-centric metric, the message-centric metric allows us to
determine to what extent the set of future messages benefit
from the predicted groups. It does not, however, inform us
about how useful each group is. It is possible that a small
number of the predicted groups are useful for all future

messages and the other predicted groups are in fact ephemeral
groups never used in the future. The group-centered metric
determines the average usefulness of the groups, albeit for only
one future message.

V. RESULTS ANALYSIS
As mentioned earlier, we chose to limit the number of

constants to test when conducting our experiments. These
constants are shown in Table 1.

Using these constants, we predicted groups for each of our
participants and computed both the group-centered and
message-centered metric for each approach, which are shown
in Table 2.

These results lead us to conclude that the Google Score
Graph Generation algorithm with half-life arguments of 1-week
and 2-week (highlighted in green) provide the most useful
groups. With these approaches, on average it took 93.3% less
effort in terms of additions and deletions to convert a group to
the collaborators of its closest message than it would to
manually create the group of collaborators. Moreover, if all
messages used the predicted groups, these best results would
require 93% less effort in terms of additions and deletions than
addressing those messages manually without contact groups. If
our simple metrics truly capture reality, this is a very strong
result, and shows the usefulness of the composition approach.

In our experiments, we also observed that the group-
centered approach nearly always produces a smaller percentage
than the message-centered approach. This is expected. If a
group is persistent, it is likely to be close to some future
message. However, not every message is expected be close to
some group, as certain messages are likely to be addressed to
ephemeral groups. The fact that the message-centered metric is
slightly larger than the group-centered metric suggests that
ephemeral groups are small in number.

Across our Google Score tests, all of our group-centered
and message-centered metric results were close in value. The
closeness of the results of these various methods suggests that

Table 1. Graph Generation Constants
Graph Generation

Approach
Time

Threshold Half-life Sent Constant

Simple Graph - - -

Simple Threshold 2 Weeks - -

Simple Threshold 1 Month - -

Google Score - 1 Week 1.0

Google Score - 2 Weeks 1.0

Google Score - 1 Month 1.0

Google Score - 2 Months 1.0

Table 2. Results of Group Prediction in Email

Graph Creation
Approach

Time Threshold
or

Half-life

Group
Centered

Metric

Message
Centered

Metric

Simple Graph N/A 7.8% 8.1%

Simple Threshold 2 Weeks 18.8% 24.9%

Simple Threshold 1 Month 7.8% 8.1%

Simple Threshold 2 Months 7.8% 8.1%

Google Score 1 Week 6.7% 7.0%

Google Score 2 Weeks 6.7% 7.0%

Google Score 1 Month 7.8% 8.1%

Google Score 2 Months 7.8% 8.1%

changing the half-life parameter does not have a large impact
on the result of the groups produced.

One case of Simple Threshold with a threshold of 2 weeks
(highlighted in red) performed much worse than any other
graph generation approach we tested. This is a particularly
interesting result, since its threshold is the same value as the
half-life of one of best performing Google Score approaches,
which is also tied for the best performing approach overall.
This suggests that it is better to treat older messages as less
important rather than ignoring them entirely when
automatically identifying contact groups in email.

Moreover, the best Google Score approach was only
slightly better than all approaches except the approach
mentioned above. Among these approaches is the Simple
Graph technique, which does not ignore any messages. Thus,
there is limited usefulness (in terms of the metrics we used) of
ignoring old past messages. One concern, of course, is
efficiency. The larger the set of message we consider, the more
the number of messages we must process and the more the
number of edges between nodes. Our results show that after
one month of data, there is a small benefit of including
additional messages.

Our studies also show that the group-centric metric
improves with the message-centered one – it is not the case that
one approach offers better group-centered distance and worse
message-centered distance than another.

Our model of user effort does not take into account the cost
of naming groups. This may be an arduous task, because each
group must have a unique and memorable name. The larger the
number of predicted groups, the more difficult it is to choose
from them. The metrics also do not penalize prediction of too
many groups.

The user effort saved can be misleading in some systems as
the metrics we looked at assumed both deletions and insertions.
Our automatic evaluation model assumes that the users accept
an initial group and never edit them afterwards. Instead, they
add and remove the members generated by each group in each
subsequent message that uses the group. This model has two
problems. First, many email systems allow users to add to the
list of recipients in a named group but not remove from them,
though recent ones, in particular, Gmail, do allow deletions
Second, the users will edit the initial groups, which we have
not captured in our automatic model. Future work is required to
either require such user intervention or assume an automatic
model of user editing. For example, we can go through the
series of future message, and for each message, we can find the
closest committed or uncommitted group to it. If it is
committed then the user effort is the number of additions to
cover all recipients. If the group is uncommitted, we can
perform edits to it that make it conform to the message and
then commit it. In this case, the user effort is the number of
additions and deletions to make it conform.

We also did not evaluate whether email messages originally
contained the correct recipients. Past work has observed that at
least 9.27% of users have incorrectly addressed messages [5].
This indicates that some of our participants may have
incorrectly addressed messages. If our study participants had

incorrectly addressed messages in the training set, we may have
incorrectly predicted groups. If some messages in our test sets
were incorrectly addressed, we may have incorrectly measured
the effectiveness of our groups. Future work can look into
techniques to remove or correct messages with incorrect
recipients.

Our user study was also largely limited to university
students. It is not clear that these results would apply outside
this population. Social relationships may be organized
differently in different settings, such as a corporate
environment. If the social organization is different enough, our
prediction approach may not predict useful groups. Future
work may look into the application of our group prediction
techniques in a wider population.

A. Performance
Finding maximal cliques is an NP-complete algorithm; thus

the hybrid clique merger we used can take a substantial amount
of time, depending on the size of the graph. We expect it to run
in the background during lulls and only after a certain number
of contacts have been added. Nonetheless, it will be useful to
explore more efficient techniques to mine social graphs.

In practice, however, we found that group detection from
our generated graphs did not take an inordinately long time.
For example, groups were extracted from a Google Score
generated graph in 3.3 seconds for a participant with over 627
email messages. Moreover, even though some participants had
generated graphs with over 500 nodes, all group predictions
required less than an hour.

 In comparison, similarly sized Facebook graphs sometimes
required over 1 week. The quick extraction of groups in the
email case may be due to the sampling process we used. Since
our process collected at most 2000 messages and 400 threads
for each participant, these are likely not to be very dense graphs
in terms of edges. With fewer messages, there are fewer
chances for edges to form between nodes in the graph.
Therefore, it is likely that many nodes in these graphs w not
have edges between them, which then reduces the cost of
finding maximal cliques. Future work may study the effect of
larger email accounts on group extraction time.

VI. CONCLUSIONS AND FUTURE WORK
Our approach makes several contributions. It places group

prediction algorithms in a design space with two main
dimensions, domain and type of group, as shown in Table 3.
We have looked at two domains – email and social networks,
which use message addresses and friend lists, respectively, for
prediction. We have looked at two kinds of groups – persistent
groups predicted in batch without the context of an application,
and ephemeral groups predicted incrementally using the
context of a specific message and previously selected
recipients. We have shown that it is logically possible to create
a new approach for predicting persistent groups in a new
quadrant of this design space by combining two existing
approach in the other two quadrants.

We developed two additional novel approaches for
predicting persistent email-groups: Simple Graph, Simple
Threshold, and Google Score. All three approaches define

graphs that are then mined by the hybrid clique merger
algorithm.

Two of the three algorithms require identification of values
of parameters, time threshold and half-life & sent constant,
which must be set before graphs can be created. Using actual
user emails, we used cumulative distribution functions to
analyze the effects of different constant values. This analysis
allowed us to reduce the set of possible parameters down to a
manageable, evaluable set of constants.

For our evaluation, we identified two new metrics,
message-centered and group-centered, which do not require
any user involvement. These metrics compute the distance
between predicted groups and actual collaborators in a
message, and attempt to determine both the likelihood that a
predicted group will be used in a future message and that a
message will use a predicted group.

Based on these two metrics, we have several interesting
results. The Google Score Graph Generation algorithm with
half-life arguments of 1-week and 2-week provide the most
useful groups. The groups predicted by it, on average, would
require about 90% less effort than no use of groups, which is a
very strong result. Our results also show that simpler scoring
techniques also save at least 90% user effort, and that two
weeks is too small a range in the simple threshold approach.

As all of the successful approaches were based on the
Clique Merger, our results imply that there is a link between
group identification in email and Facebook, and possibly more
generally between social networks and email.

These are only preliminary results as our work has several
limitations that can be addressed by future research.

As mentioned earlier, the ability to efficiently address
recipients is only one application of named groups. Our metrics
do not evaluate other benefits [2] such as the ability to organize
contacts. The section analyzing results discusses other
limitations of the evaluation that need to be addressed in future
work.

 Future work is also needed to explore the link between
social network and email in more depth. Do users form the
same social structures and hierarchies in these two kinds of

systems? Can other group-based prediction approaches, such
as Gmail’s recipient prediction, apply across these systems?

Finally, we have looked at relatively coarse-grained
dimensions in composing research efforts. It would be useful to
combine aspects of the graph mining techniques to, for
instance, take the intersection or union of the predicted groups.

Despite these limitations, our work shows stark reductions
in effort using the composed group prediction approach, and
more importantly, provides a basis to investigate new graph
mining techniques in email and the cross-pollination of group-
based predictions.

ACKNOWLEDGMENT
This research was supported in part by the NSF award IIS

0810861.

REFERENCES
[1] Amershi, S., Fogarty, J. and Weld, D.S. 2012. ReGroup: Interactive

Machine Learning for On-Demand Group Creation in Social Networks.
Proc. CHI (2012).

[2] Bacon, K. and Dewan, P. 2011. Mixed-Initiative Friend-List Creation.
Proc. ECSCW (2011).

[3] Bartel, J. and Dewan, P. 2012. Towards Hierarchical Email Recipient
Prediction. Proc. CollaborateCom (2012).

[4] Bartel, J.W. and Dewan, P. 2013. Evolving friend lists in social
networks. Proc. of RecSys (New York, NY, USA, 2013), 435–438.

[5] Carvalho, V.R. and Cohen, W.W. 2008. Ranking Users for Intelligent
Message Addressing. Proc. ECIR (2008).

[6] Fisher, D. and Dourish, P. 2004. Social and Temporal Structures in
Everyday Collaboration. Proc. CHI. (2004).

[7] Friggeri, A., G. Chelius and Fleury, E. 2011. Triangles to Capture
Social Cohesion. Proc. SocialCom (2011).

[8] Grob, R., Kuhn, M., Wattenhofer, R. and Wirz, M. 2009. Cluestr:
mobile social networking for enhanced group communication. Proc.
GROUP. (2009).

[9] MacLean, D., Hangal, S., Teh, S.K., Lam, M.S. and Heer, J. 2011.
Groups without tears: mining social topologies from email. Proc. IUI
(2011).

[10] Mcauley, J. and Leskovec, J. 2012. Learning to Discover Social Circles
in Ego Networks. Proc. NIPS (2012).

[11] Newman, M.W., Lauterbach, D., Munson, S.A., Resnick, P. and
Morris, M.E. 2011. “It’s not that I don’t have problems, I’m just not
putting them on Facebook”: Challenges and Opportunities in Using
Online Social Networks for Health. Proc. CSCW (2011).

[12] Palla, G., Der´enyi, I., Farkas, I. and Vicsek, T. 2005. Uncovering the
overlapping community structure of complex networks in nature and
society. Nature. 435, (2005), 814–818.

[13] Radicati, S. and Levenstein, J. 2013. Email Statistics Report, 2013-
2017. The Radicati Group, Inc.

[14] Roth, M., Ben-David, A., Deutscher, D., Flysher, G., Horn, I.,
Leichtberg, A., Leiser, N., Matias, Y. and Merom, R. 2010. Suggesting
Friends Using the Implicit Social Graph. Proc. KDD (2010).

[15] Skeels, M. and Grudin, J. 2009. When Social Networks Cross
Boundaries: A Case Study of Workplace Use of Facebook and
LinkedIn. Proc. Group (2009).

[16] Vaidya, J., Atluri, V., Guo, Q. and Adam, N. 2008. Migrating to
optimal RBAC with minimal perturbation. Proceedings of the 13th
ACM symposium on Access control models and technologies (2008).

Table 3 Design Space of Group Recommenders

 Email Social Network

Persistent Clique Merger +
Google Score

Clique Merger

Ephemeral Google Score

