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ABSTRACT 

Jacob William Bartel: Predictions to Ease Users’ Effort in Scalable Sharing 

(Under the direction of Prasun Dewan) 

 

Significant user effort is required to choose recipients of shared information, which grows as 

the scale of the number of potential or target recipients increases. It is our thesis that it is possible 

to develop new approaches to predict persistent named groups, ephemeral groups, and response 

times that will reduce user effort. 

We predict persistent named groups using the insight that implicit social graphs inferred from 

messages can be composed with existing prediction techniques designed for explicit social 

graphs, thereby demonstrating similar grouping patterns in email and communities. However, 

this approach still requires that users know when to generate such predictions. We predict group 

creation times based on the intuition that bursts of change in the social graph likely signal named 

group creation.  While these recommendations can help create new groups, they do not update 

existing ones. We predict how existing named groups should evolve based on the insight that the 

growth rates of named groups and the underlying social graph will match.  

When appropriate named groups do not exist, it is useful to predict ephemeral groups of 

information recipients. We have developed an approach to make hierarchical recipient 

recommendations that groups the elements in a flat list of recommended recipients, and thus is 

composable with existing flat recipient-recommendation techniques. It is based on the insight 

that groups of recipients in past messages can be organized in a tree. 
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To help users select among alternative sets of recipients, we have made predictions about the 

scale of response time of shared information, based on the insights that messages addressed to 

similar recipients or containing similar titles will yield similar response times.   

Our prediction approaches have been applied to three specific systems – email, Usenet and 

Stack Overflow – based on the insight that email recipients correspond to Stack Overflow tags 

and Usenet newsgroups. 

We evaluated these approaches with actual user data using new metrics for measuring the 

differences in scale between predicted and actual response times and measuring the costs of 

eliminating spurious named-group predictions, editing named-group recommendations for use in 

future messages, scanning and selecting hierarchical ephemeral group-recommendations, and 

manually entering recipients. 
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1. INTRODUCTION 

 

Many collaborative systems require sharing, or the exchange of information among users, to 

function properly. Sharing can be either non-computer-based, such as when the members of a 

study group pass a handwritten set of notes amongst each other during a weekly meeting, or 

computer-based, such as if the same study group members email each other typed copies of the 

same notes. This dissertation focuses on computer-based sharing.  

 

There are many computer-based systems that support sharing.  As shown in Figure 1, these 

systems can be classified into multiple domains, some of which are defined as follows: 

 Email – A user shares information in the form of messages with email addresses that map to 

one or more users.  

 Distributed Repositories – Users share computer files and folders across multiple machines. 

Application sharing Instant Messaging Virtual Worlds 

Distributed 

Repositories 
Email Communities 

Figure 1. Example Domains of Computer-based Sharing Systems 
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 Communities – The sharing of new information and accessing of old information in the form 

of messages, posts, links, pictures, videos, and user profiles is determined solely by 

connections between users. Connections are in turn determined by a user self-identifying 

relationships with other users or memberships in groups of users. 

 Instant Messaging – Users share information with some members in a list of contacts by 

sending and receiving short textual messages called instant messages [10]. 

 Application Sharing – A user shares semantic information or screen pixels associated with an 

application. 

 Virtual Worlds – In a simulated environment with simulated physics, each user is mapped to 

a single character which shares information by interacting with the environment or other 

users in the environment in real time [21]. 

In each of these domains, users must decide with whom among all other users they wish to 

share some piece of information. When addressing this user-selection problem, it is possible for 

users to make mistakes.  This indicates there is a sense of correctness when sharing.   

Correctly addressing this problem can be difficult, and incorrectly addressing the problem 

can lead to detrimental results. According to government reports, 9/11 was not prevented at least 

partially because information was not shared with enough people [78].  Later, the government 

went in the almost opposite direction, where information was arguably shared with too many 

people, because Bradley Manning, the soldier who released the data contained in WikiLeaks, 

was allowed access to a large collection of intelligence information rather than only the 

information that was necessary for and relevant to his job [28].  Both these issues showcase 

difficulties of addressing sharing issues in distributed repositories, but these problems also occur 

in email and communities.  For example, Congresswoman Michelle Bachman was accidently 
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addressed in a private email critical of her [76], many Facebook users inadvertently granted 

access to more advertisers that should have been allowed [114], and participants in a particular 

study did not share possibly useful health information on Facebook because it was too 

cumbersome to correctly choose privacy settings [79]. 

The more general problem of selecting items from a set of options can explain what may 

cause these kinds of issues.  This general selection problem has two distinct issues.   First, users 

must remember all possible options. Second, for each possible option, users must decide a binary 

value for whether or not to select the option.  Miller [75] found that users had difficulty 

completing these two tasks correctly due the limitations of their short term memory.  Users could 

only recall 5-9 elements from lists of options from their short term memories and could, at most, 

correctly specify only a portion of binary features from memory. Miller’s work has since been 

incorporated into many discussions about user interfaces and user interaction. For example, 

textbooks have advised UI designers to limit the number of elements that users are required to 

remember.  In this way, all elements can manageably fit in the users’ short term memories 

[66,90] 

 These findings regarding users’ limited short term memories can explain the previously 

described user-selection problem.  In particular, users may not be able to recall more than 5-9 

possible users with whom to share from their short term memories.  Furthermore, even if it were 

possible to remember all possible options, users would not likely be able to correctly decide 

whether or not to select each other user from memory (which is a set of binary features). 

One obvious approach to reducing difficulty due to limits in human memory is to offload the 

options into computer memory.  To allow such offloading, systems may allow users to (a) upload 

and then read through a list of computer stored options or (b) establish rules to automatically 
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select options.  In practice, many information security systems have used this idea of offloading 

to computer memory.  Several email clients such as Mozilla Thunderbird and Gmail allow a user 

to read through a list of contacts to select to whom to address an email.  As another example, in 

many distributed repositories, users can set up rules for selection by specifying security policies 

[86,95]. Selecting which users have access to information is then decided automatically by the 

policy under which a user falls.  

Another more subtle approach for addressing possible limits in human memory is to group 

options. Miller [75] showed that by grouping individual items, a user can remember more items 

than if the items were not grouped.  For example, users could only remember a limited number 

of characters individually, but they could remember more characters that were grouped into 

words. Furthermore, by deciding based on groups rather than individual options, the user may 

need to make fewer binary decisions about whether or not to select an option.  Again, this 

approach has been adopted by many systems that address information security. In a variety of 

systems such as Gmail [91], Facebook [45], and Unix file systems [63], users can sort other users 

into groups , which can then be used later to address the user selection problem. 

Although both the offloading memory to a computer and grouping help mitigate the 

difficulty arising from limits in human memory, they require additional effort on the part of 

users.  In the case of offloading memory to a computer, a user may need to both transfer 

information to the computer and retrieve information when making selections.  For example, to 

define rules, a user must exert effort to define rules that cover all possible future cases.  

Furthermore, to read through the list of stored options, a user must parse each option and then 

decide whether or not it should be selected. Similarly, when grouping, users must exert effort to 

create, populate, and maintain groups. Logically, the effort in all these cases increases as the 
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scale increases. The larger the number of options with whom it is possible to share, the more 

actions users must perform to parse items from a list of options, define rules, or identify and 

specify groups. 

Some sharing domains (such as communities or email) have large enough scales to indicate 

high user effort. In Facebook, users have on average over 130 friends with whom they can share 

information [68], and the average account in the Enron Email Corpus [115] had over 520 

contacts. It is likely in both cases that a user will find it very difficult to (a) recall every possible 

user with whom they may share information and (b) correctly determine whether or not to share 

with each possible user.  Furthermore, with large scales, users must exert a large amount of effort 

to offload memory or group users. 

This increased effort takes time and resources, which may come at the expense of other tasks. 

In general, it has been claimed that users tend not to fully solve an information security problem 

if by doing so they are able to complete other tasks more productively or practically [4,25] which 

has been supported by various studies in past work [26,77,85].  This tradeoff is due to the fact 

that addressing security is a process with both costs and benefits. In this process, costs can be 

incurred both by the act of performing tasks to ensure security and by learning how to use 

mechanisms to perform such tasks. If these costs exceed the benefits, information security is 

often ignored or not fully addressed. Past work has found users often avoid fully addressing 

security in a variety of ways, such as by delegating decisions to other users or software [37,85] 

or by habitually performing the same actions without processing situation-specific details (e.g. 

clicking “OK” on a prompt without reading the prompt’s message) [26,77,85]. 

This tradeoff of effort may also explain observations in previous work in the user selection 

problem.  For example, users chose not to share any health information on Facebook [79], users 
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do not spend the effort to learn how to use groups in Facebook [103], or most mobile users do 

not use existing functionality to group their contacts [50]. 

The question then becomes how to reduce effort.  Effort can be maximally reduced if users 

are not required to exert any effort.  This can be done through full-automation.  In this approach, 

a system automatically performs all tasks without input from users.  To illustrate, a hypothetical 

system may automatically choose with whom to share health information or to whom to send 

messages.  However, this approach assumes that the system can perfectly determine what should 

be done.  Past work has shown this is not the case in many instances of the selection problem 

[31,91,104]. Systems may lack complete information to make correct judgments or may apply 

incorrect models to make their judgments. If systems make incorrect judgments, there can be 

detrimental results, such as information being shared with not enough people or being shared 

with too many people. 

Instead of full-automation, it is possible to take a mixed-initiative approach, so called 

because both the system and users take initiative in exerting effort.  In this approach, the system 

automatically identifies some tasks to perform, which users then verify or modify before the 

system is allowed to perform them.  In other words, the system would generate 

recommendations. Using concepts from the study of NP problems, it is possible to infer that such 

recommendations are likely to require less effort than manual approaches. NP problems can be 

verified using deterministic Turing machines, but non-deterministic machines are required to 

generate the solutions.  Because deterministic machines are less complicated and more easily 

implementable than non-deterministic ones, it follows that for many problems verification of 

solutions is an easier and less resource-intensive task than solution generation. 
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Not all sharing domains are compatible with recommendations or are at large scales that 

require high effort.  To generate and evaluate recommendations, a domain must have an 

accessible record of past sharing.  Without a past record of sharing, it is not possible to test the 

different recommendation approaches for the same sharing actions and the same users.  

Moreover, recommendations may be more effective if they are generated based on a record of 

sharing. Furthermore, domains must also have large scales of users with whom to share 

information in order to justify the overhead of implementing, learning, and using 

recommendations. However, domains are likely not to have large scales when they do not have 

asynchronous collaboration, because users would be required to collaborate at the same time, 

which limits the number of collaborators. These two domain features that pertain to 

recommendations are shown in Table 1. 

Table 1. Recommendation relevant features of sharing domains 

Domain Asynchronous 

Collaboration 

Accessible record of 

past sharing 

Email Yes Yes 

Communities Yes Yes 

Distributed Repositories Yes No 

Instant Messaging No Yes 

Application Sharing No No 

Virtual Worlds No No 

 

As the table indicates, instant messaging, application sharing, and virtual worlds are 

synchronous.  By a strict definition, instant messaging (IM) does support asynchronous 

collaboration.  However, past work has found that users tend to expect recipients of their instant 

messages to respond very quickly, i.e. immediately or within a few minutes [33,84].  Therefore, 

because of social pressure, IM users tend to treat instant messaging as a synchronous system.  

Application sharing is synchronous because collaboration in this domain requires that users see 

interactions in applications as they occur, which implies synchronous collaboration.  Similarly, 
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in virtual worlds, because users must interact with the virtual environment in real time, virtual 

worlds are synchronous. 

The table also indicates that the distributed repository, the application sharing, and the virtual 

world domains do not have an accessible record of past sharing.  Some systems in these domains 

may allow tracking of sharing, such as Windows which allows the auditing of user access to files 

or folders. However enabling this tracking is not a simple process.  The users must both enable 

auditing and specify which files or folders to track before any information is stored, both of 

which must have been previously allowed by their system administrators. This leads to many 

cases where tracking is not enabled, and thus no record of past sharing is available.  

On the other hand, both email and communities have asynchronous sharing and include an 

accessible record of past sharing as a part of their sharing functionalities. For this reason, recent 

work has focused on making recommendations in the email [31,55,69,91] and communities 

domains [6,15,45,82,104]. Similarly, we will focus our recommendations for the user 

specification problem on these two domains. Using this focus on the email and community 

domains, the overall thesis is as follows: 

 

There are many types of recommendations that fall under our overall thesis. Therefore, to 

address this overall thesis, we identified appropriate recommendations that have not been fully 

covered by past work and that address the claims of the overall thesis. For each type of 

recommendation that we identified, we developed relevant sub-thesis. Each sub-thesis was tested 

using an experiment we developed and tested. 

OVERALL THESIS 

It is possible to make recommendations in email and communities for addressing the user 

selection problem in large-scale, computer-based sharing that will require less user effort than 

past recommendation techniques or cases with no recommendations. 
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The remainder of this dissertation is organized as follows. First, we discuss past work related 

to the user selection problem in information sharing systems. Next, we discuss methods for 

properly evaluating recommendations. Then we present four different types of recommendations 

each in their own chapter. Then, we identify their relevant sub-theses, and results supporting our 

sub-theses. Finally, we present our conclusions and future work. 
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2. RELATED WORK 

2.1. METHODS FOR MANAGING ACCESS CONTROL 

2.1.1. THE ACCESS MATRIX 

Specifying which users may access shared information and resources is not a new problem. 

As early as 1974, Lampson [63] developed a general system for describing access control based 

on observations that many systems were using ad-hoc approaches. This hypothetical system was 

called the object system, which had three main elements: (1) objects or information or resources 

that could be shared, (2) domains (called subjects in much of later work and throughout the rest 

of this paper) that could access objects [100], and (3) an access matrix A that determines how 

subjects may access objects, such as by reading, writing or executing. This access matrix is made 

up of rows labeled by subject and columns labeled by object. Each entry 𝐴[𝑖, 𝑗] then lists the 

access rights that subject i has with respect to object j. 

To illustrate how such a system would work, consider the following example borrowed and 

adapted from the work of Reeder et al. [86]. Jana is a TA for Comp 101, which means Jana is a 

subject. Because of her job, Jana is a member of a group of subjects named Comp 101 TAs. 

According to Lampson’s system, groups are one of the many items that are subjects, and thus 

Comp 101 TAs is a subject. In addition, there are two more groups of which Jana is not a 

member, Comp 101 Students and Comp 101 Instructors. Shared amongst all these groups of 

users is a directory handouts/, which contains the file For Loops.doc. Normally members of 

all three groups can read the directory handouts/ and its contents, but only instructors are able 

to edit the directory and its contents. However, Jana has been tasked with correcting some errors 
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in the For Loops.doc, which means she needs special write access. Using Lampson’s object 

system, it is possible to specify all of the above access rights, as shown in Figure 2. 

 Comp 101 

Instructors 

Comp 101 

Students  

Comp 101 

TAs 

Jana 

handouts/ owner 

read 

write 

read read  

handouts/For 

Loops.doc 

   read 

write 

Figure 2. Portion of a Sample Access matrix 

Lampson argued that this approach is flexible enough to apply to a wide range of situations. 

Subjects and objects were not explicitly defined, so that they could apply to many types of agents 

and resources. Subjects could represent users, processes, or groups of subjects, and objects could 

represent I/O devices, disk segments, pages, files, or directories. Some of this flexibility is 

illustrated in the above example. Both individual users (e.g. Jana) and groups of users (e.g. Comp 

101 TAs) are subjects, and both files (e.g. For Loops.doc) and directories (e.g. handouts/) are 

objects. 

Furthermore, rights could be specified at a group level and could propagate down. For 

example, the empty spaces in Figure 2 could be filled by propagating down rights from the 

parent directory or group. Because Jana is a member of the group Comp 101 TAs, she would 

only have the read access to other files and folders in handouts/. Similarly, Comp 101 

Instructors, Comp 101 Students, and Comp 101 TAs would have the same access rights to 

For Loops.doc as they do to handouts/, because For Loops.doc is contained in handouts/.  

However, such grouping can lead to conflicts between rights. For example, if Jana were both 

a member of Comp 101 TAs and Comp 101 Instructors, would she have owner and write 

access to the handouts/?  Lampson did not provide methods to address such cases of conflict. 

In cases where it is impractical to store the whole matrix in memory, Lampson also presented 

three methods for storing the access matrix: (1) a list of capabilities <o : A[s,o]> attached to each 
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subject s,  (2) a list of access rights <s:A[s,o]> attached to each object o, or  (3) a table of triples 

<s, o, A[s,o]>. Each of these approaches has tradeoffs, and Lampson designed each case for 

certain cases. For example, users may want to use the first method if they are often accessing or 

setting rights by subject, the second if they are doing the same except by object, or they may use 

the third method if they are setting or accessing rights by objects and subjects at approximately 

the same frequency. 

2.1.2. EXPANSION AND ADAPTATION OF THE ACCESS MATRIX 

This approach of Lampson has been adapted for specifying access control for standard files 

and resources in a variety of systems [86,94,102].  Other work has expanded in a variety of 

ways, such as by developing methods for resolving conflicts [86,100] and expanding on the 

object system to apply the access matrix to scenarios beyond access to a standard file system.  

Since this dissertation is largely focused on the recommendations to assist systems that have 

different functionalities than the standard file system, we will focus on the latter expansions to 

Lampson’s work. 

Mazurek et al. [73] expanded beyond a hierarchical file system to allow users to control 

access in a tag-based rather than a classical hierarchy-based file-system.  This system is not the 

first to use tags. For example, Gmail, Stack Overflow, and Piazza each use tags (called labels in 

Gmail) in place of folders for organizing email messages or posts [71,116,117].  However, to our 

knowledge, Mazurek et al. are the only ones to apply such tags in place of folders for managing 

access control in file systems. 

In their system, called Penumbra, users are able to create cryptographically-signed tags to 

manage access control. Each tag has an attribute, value, and file to which it is assigned. Access 

right rules can then be made using relationships between users and tags. 
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To illustrate, consider the previous example of Jana the TA. Suppose Jana is a TA for both 

Comp 101 and 201 for her classes. For each of these classes, she must create various documents. 

Jana can then assign the tags (attribute=”class”, value=”comp101”) and 

(attribute=”class”, value=”comp201”) to the documents in the respective class. She can 

also label each document based on its type with a tag with the attribute “type”. These “type” 

tags could then have values such as “lecture”, “homework”, and “take-home exam”. 

Then, using these tags Jana could specify that only students in the respective class could have 

access to the files with the tag (attribute=”class”, value=”comp101”) or 

(attribute=”class”, value=”comp201”). Moreover, supposing Jana wanted to make her 

lectures widely accessible, she could grant public access to any file with the tag 

(attribute=”type”, value=”lecture”). 

In order to do this in a classical hierarchy-based file system, Jana may be able to create 

folders for comp101, comp201, lecture, homework, and take-home exam. However, since there 

are separate documents in each of the classes, Jana would need to exert additional effort creating 

folders with similar names and similar hierarchical structures. Either she can have comp101 and 

comp201 root folders with lecture, homework, and take-home exam folders in each root 

folders, or she can have lecture, homework, and take-home exam root folders with duplicate 

comp101 and comp201 folders in each root folder. Moreover, if the two classes require some of 

the exact same documents, she would have to create duplicate documents, one for each class, 

regardless of which folders serve as the root. (In the Penumbra system, she could just add both 

comp101 and comp201 tags to any shared document.) 

 In either of the standard file system hierarchies, she could then make access rights decisions 

at the folder level to gain the same functionality. However, depending on the hierarchical 
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structure she used, Jana may have to repeat some access rights specifications.  For example, if 

she used lecture, homework, and take-home exam folders as roots, she would have to specify 

access to multiple comp101 and comp201 folders. Furthermore, if Jana used the alternate 

hierarchical structure (with comp101, comp201 folders as roots), and she wanted to make her 

lectures publicly accessible, she would have to repeatedly specify access rights for all folders 

named lecture. Moreover, as mentioned before, if her classes share any documents, she would 

have duplicate rights specifications for each copy of these files in the folder system. 

Shen and Dewan [100] also expanded on the object system to apply it to apply to a general 

model of collaborative systems. To illustrate, again consider the previous example of Jana the 

TA. In order to help teach her students in her Comp 101 recitation, Jana uses a collaborative 

editor to demonstrate writing a method, searchExample, in Java. Depending on the lesson in 

which this illustration is used, Jana may want her students to only look at the code in this 

method. In other cases, she may want to allow students to change their personal views to cross 

reference with other methods or classes, but to not allow those changes in view to affect her or 

other students’ views. Therefore, collaborative models require the ability to specify rights about 

how resources may be transmitted in addition to being accessed. However, transmit rights were 

not supported in Lampson’s object system.  

Therefore, to extend the object system, Shen and Dewan identified that Lampson’s system 

needed to support additional collaboration rights. For example, a given method searchExample 

may have the transmit rights of ValueCoupled and ViewCoupled, which determine whether 

users share the value or the view of the method, respectively. In our above example, Jana would 

keep ValueCoupled true to keep code consistent between her and her students, but may set 
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ViewCoupled to false to allow students to look at other code during her recitation without 

changing her or other students’ views. 

This idea of transmit rights is intended to match other work that does not directly expand on 

Lampson’s matrix but does use similar concepts of subjects, rights, and objects to manage access 

control. For example, email systems control who may access and how they may access email 

messages by following the internet message format [88]. This format indicates messages may 

have the destination fields TO, CC, and BCC. These fields should contain lists of subjects, which 

have the right or permission to read the message’s contents, forward the message, and respond to 

the message. The BCC field also contains an additional negative right of restricting any other 

recipients of the message from viewing the contents of the BCC field. 

This approach is consistent with an idea Lampson proposed in his work on access lists. Each 

object is linked to a list of subject/rights pairs. Each pair denotes what rights the subject may 

have when accessing the given object. The email case a more simplified version of the access 

list, where each email message is an object that contains multiple access lists, such as TO, CC or 

BCC. In email, access lists are only lists of subjects rather than subject/rights pairs. Rights are 

inferred from the access list(s) in which the subject exists. For example, subjects in the TO list 

have different rights than the BCC list. This link between the access matrix and email is further 

supported by the work of MacLean et al. [69], which specifically mentioned that addressing 

recipients in an email message implicitly grants them rights to shared information. 

Similarly, some internet communities systems make use of the simplified form of access lists 

used in email. Usenet messages follow a specific format which is very similar to that of email 

[54]. However, instead of TO, CC, or BCC fields, they contain a Newsgroups field. This field 
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contains a list of Usenet groups and only users that subscribe to a listed group or visit a listed 

group’s repository of messages are able to access that particular message. 

Shen and Dewan recognized that introducing new transmit rights could lead to a much larger 

number of rights. With more types of rights, users may be required to make more specifications 

about rights. The additional effort to make these additional specifications may impede the 

collaboration process. To reduce the cost of specifying all these possible new rights, Shen and 

Dewan developed more extensive schemes to group, relate, and resolve conflicts amongst 

elements in the access control system.  These schemes then make it possible for the system to 

better infer which rights should be granted in a given case. Subjects and objects may be grouped. 

Rights may be assigned based on the value group an object belongs to or the role a subject has 

taken. Subjects may also have the rights of another subject. For example, a PhDStudent may 

have all the rights of a MSStudent.  Moreover, certain rights are able to include others. For 

example, the right to Listen includes the right to ListenToRawData and the right to 

ListenToParsedData. Rights may also imply other rights. To illustrate, if subjects are able to 

insert then it is implied that they have the right to read. Moreover, conflicts could be resolved 

based on these relationships. For example, inherited or included rights based on groups were 

weaker and thus took less precedence in relationship to specified rights. 

However, even with Lampson’s work and the expansions upon it, there is a strong possibility 

of error.  Because of the possible complexity of relationships among various subjects, objects, 

and rights, it is possible either a user specifies access improperly or rights are incorrectly inferred 

due to conflicts. 
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2.1.3. INTERFACES FOR SPECIFYING ACCESS RIGHTS 

Reeder et al. [86] observed this possibility of significant error in approaches that make use of 

Lampson’s concepts of subjects, object, and rights for access control. They hypothesized that 

many errors occur in authoring access control policies because user interfaces for authoring 

access policies do not show how changing the rights for one subject/object pair could affect 

another pair or lead to conflicts. For instance, policy authors may inadvertently restrict subjects 

from objects they need to access or grant subjects access to objects that should be restricted. 

Reeder et al. pointed out that this may be particularly true in cases where groups are used in 

access control. Because groups may contain many members, it is easy to forget which groups 

contain which members, leading to incorrectly assigned rights. 

To address this claim, they developed the Expandable Grids user interface for managing 

access control. This interface, shown in Figure 3, consists of a grid whose rows correspond to 

objects and columns to subjects. In each cell, there is a set of colored boxes that denote the 

access rights for a given subject/object pair. As the legend in the upper right shows, certain boxes 

correspond to different types of rights, and colors indicate whether the right is allowed or denied. 

As rights are changed for one subject, object, or group, colors change throughout the interface to 

show how one change to policy may cause other changes.  
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Figure 3. Expandable Grids User Interface 

Reeder et al. experimented with this user interface in a user study focused on novice or 

occasional access-policy-authors. They recruited 36 undergraduate students who had no 

experience as systems administrators and were majoring in science, engineering, or math. In both 

the Expandable Grids UI and an existing Windows interface, these participants were asked to 

complete tasks that included viewing access policies, changing policy, comparing groups, 

resolving conflicts between group-based policies, detecting unauthorized access, and making 

exceptions for individual members of a group. Based on these experiments, they observed that 

more participants were able to correctly complete tasks and participants were able to more 

quickly complete tasks in Expandable Grids than using the Windows interface. They also 

observed that their participants made three types of errors when using the expandable grids 

interface: (1) Participants knew the correct element to select or change, but accidently shifted the 

mouse to a different element, (2) when searching for elements, participants would accept a 
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similarly named but incorrect item that showed up first in the search (e.g. selecting the 

Assignment1 folder rather than the assignment1.pdf), and (3) participants found the rotated 

labels for columns difficult to read. 

2.2. USER EFFECT ON CORRECTNESS AND RISK 

Reeder et al.’s [86] hypothesis and observations fit with a more general idea that in order for 

the end result to be satisfactory, users must both understand the possible results and how to 

achieve an intended result. This effect of users has been addressed by a variety of past studies. 

Dourish et al. [37] studied how users understand and address security concerns, and Wilde [111] 

and Wimberly & Liebrock [112] studied how users understand and mitigate risk according to the 

theory of risk homeostasis.   

2.2.1. USERS IN RELATION TO SECURITY 

Dourish et al. [37] conducted their study by surveying 20 participants. Of these participants, 

11 were from an academic institution and 9 were from an industrial lab. In their surveys, they 

found that younger users were more confident in their abilities with computers. However, 

Dourish et al. also observed that younger users were more pragmatic in determining their 

security needs. This meant that younger users more often saw information security measures as 

“ones that can interfere with practical accomplishment of work”, indicating security was not their 

primary concern. This is a particularly important finding, as other past work has observed that 

users are less likely to fully address a security problem if by not doing so they are better able to 

complete more important tasks [25]. 

Dourish et al. observed two different types of viewpoints that may have cause this perception 

of information security measures as an interference: (1) There is a constant set of unknown 

malevolent entities that will “always be one step ahead”, and (2) users expected security barriers 
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to address a wide range of security problems (such as blocking unwanted connections and 

emails) when in reality these barriers may only address a narrow range of concerns (such as 

firewalls that block only unwanted connections). Even if users did not have the second issue, 

Dourish et al. also observed users do not usually have the resources to be continually vigilant for 

new threats, meaning that users may not be able to use information security measures. 

Therefore, they also surveyed their users about what steps they did take to manage 

information security concerns. They found the users accomplished this by (1) delegating, (2) 

using more secure protocols, or (3) physically arranging their space to be more secure. To 

illustrate each of these techniques, consider the previous example of the TA Jana who needs to 

securely share graded assignments with her students. Students should only receive their own 

grade, and no student should have access to another student’s grade. Jana may delegate by 

having a piece of technology distribute grades (such as UNC’s Sakai) or hand them to a specific 

TA or secretary responsible for distributing grades. She may also decide to use a more secure 

protocol for communication. Many of the participants in Dourish et al.’s study viewed email as 

insecure for sensitive communication and instead chose to communicate via the phone in many 

cases. Our example TA may take similar measures. Finally, Jana may physically arrange her 

office to be secure by having her screen face away from the door, as a participant in Dourish et 

al.’s study did. This way, as students entered her office, they would not be able to view other 

students’ grades unless they came around her desk, which social stigma typically forbids. 

2.2.2. THE THEORY OF RISK HOMEOSTASIS 

Dourish et al. did not evaluate whether these actions were appropriate or effective. However, 

this choosing of correct actions falls more under the domain of Wilde [111] and Wimberly & 

Liebrock’s [112] previously mentioned studies on users effects on risk. Incorrect actions can lead 
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to undue risk when managing security, and users must therefore select actions that properly 

mitigate their risk.  

Wilde [111] proposed that user actions to address risk could be described under the Theory 

of Risk Homeostasis. This theory posits that users will perform actions to achieve a target level 

of risk based on their perceived level of risk and the effect some action will have on risk. 

According to Wilde, the actual level of risk tends to match this target level of risk. Therefore, 

even with the introduction of new tools or approaches that may better mitigate risk, the actual 

level of risk tends to remain the same in the long term, because the target level of risk has not 

changed. 

Therefore, to change actual risk levels, the target level of risk must be changed. Wilde 

postulated this could be done by changing one of four of users’ perceptions: the expected benefit 

of risky behavior, the perceived costs of risky behavior, the perceived benefits of cautious 

behavior, and the perceived costs of cautious behavior. 

Wilde developed and provided evidence for this theory by analyzing the findings of various 

studies of risk in automobiles. He looked at cases where new, risk-reducing technologies were 

added to automobiles or roads, such as seat-belts, improved headlights, or three-phase traffic 

lights. In some of the above cases, certain user behavior changed, such as fewer rear-ending 

accidents in the case of three-phase traffic lights. However, the overall risk as measured by death 

or accident rate did not change. This is due to users performing some other high risk action that 

they did not perform before the new technology was present, such as driving at a higher speed or 

following more closely. 

Wilde also postulated that even if users intend to keep risk constant, they may underestimate 

or overestimate the effect of some new technology. This will then result in the overall risk 
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decreasing or increasing, respectively. For example, when seat belts were introduced in some 

areas, the death toll increased. This may have been due to users over estimating the effect seat-

belts would have based on mass-media campaigns. Conversely, when Sweden and Iceland 

switched over from left to right-hand traffic, the accident rate decreased because users 

underestimated the effect the change would have. 

2.2.3. RISK HOMEOSTASIS IN RELATION TO INFORMATION SECURITY 

Wimberly & Liebrock [112] analyzed this Theory of Risk Homeostasis in the area of 

information security.  They hypothesized that the use of a new technology, such as a fingerprint 

scanner, would lead to weaker passwords. Intuitively, such a tradeoff between new and old 

security technologies is likely to occur in practice. Users are likely to only expend a certain 

amount of effort to manage information security, which needs to be balanced among all 

approaches for managing this security, both old and new. However, to our knowledge, no other 

work has evaluated whether such tradeoffs happen in significant numbers in reality, and 

therefore this intuition has not been experimentally evaluated. Moreover, confirmation of this 

tradeoff may be particularly important for identifying new areas of risk. 

A confirmation of this hypothesis would imply that users may trust some new security 

technology or approach enough to relax their vigilance with respect to some older security 

technologies or approaches. This can be particularly problematic in cases where users place too 

much trust in a new technology, which would lead to too much reduction in vigilance. For 

example, consider if users placed a large amount of trust in newer technologies like fingerprint 

scanners or facial recognition technology. If this trust leads to weaker passwords, but the newer 

approaches do not warrant that high trust for a variety of reasons, such as faulty scanners or 
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algorithms that yield a large number of false positives, users will introduced information security 

risks. 

To test their hypothesis, Wimberly & Liebrock recruited 96 participants, most of whom were 

undergraduate students. They told participants they needed to protect $5 from “hackers” by 

dividing the money amongst two accounts. One account would be secured by a user-defined 

password, and one would be secured by a fingerprint scanner and a separate user-defined 

password. Participants could create any passwords they wished and divide the money between 

the accounts in any way they saw fit. However, participants were told that they could only keep 

the money that hackers had not stolen from the accounts after one week. (In reality there were no 

hackers and all money remained secure, but participants were not told this until completion of 

the experiment.) 

Wimberly & Liebrock compared amounts of money users distributed to the two accounts and 

the two passwords participants created. These comparisons were used to measure participant 

trust in the fingerprint technology and risk homeostasis, respectively.  In terms of money, 

Wimberly & Liebrock found that participants tended to put more money into accounts secured 

using a password and fingerprint scanner than a password alone. Based on this, they concluded 

that users had more faith in this pair of security measures. To compare password strengths, they 

used minimum guesses using the John the Ripper password-cracking tool, the number of 

passwords in the same class, and the entropy. Overall, they found the passwords used without the 

fingerprint scanner were significantly longer than the passwords with the scanner and 77% of 

participants used weaker passwords to pair with the fingerprint scanner. According to the Theory 

of Risk Homeostasis, this indicates that participants perceived the fingerprint scanner to reduce 
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risk. Therefore, they did not feel they needed to have as strong of a password to maintain an 

acceptable level of risk. 

As Wimberly & Liebrock discussed, there are two main limitations of their study. First of all, 

it is not clear it matches reality. The intended goal was to make security a secondary concern, 

because the compensation of $5 would be the primary concern. However, there were multiple 

indications that this was not the case. Many participants left the study expressing sentiments such 

as “There’s no way the hackers are going to break into my account!” indicating that beating the 

hackers was the participants’ primary goal. It was also observed that over 68% of participants 

wrote down the password, indicating their goal was not to remember the password in order to 

access the money later. In reality, one goal is usually to create a secure but memorable password 

so that resources can be accessed regularly.  

The second limitation they discussed was the “sexiness” of the fingerprint scanner security 

mechanism. It is one of several mechanisms that are used heavily in fiction and popular culture. 

This may lead to users severely over-estimating its effect on mitigating risk with respect to 

information security. Wimberly & Liebrock did not evaluate how the effect of a fingerprint 

scanner matched that of users’ expectations. However, they did state that such effects could be 

less pronounced or non-existent if a less “sexy” mechanism was used. For example, card readers, 

which have little presence in fiction and popular culture, are a good alternative. 

Therefore, based on these findings, new mechanisms or features to reduce risk may still be 

helpful. However, due to the effects of risk homeostasis, it is important that users do not 

overestimate their effects or reduce their use of other existing and necessary security measures. 

These findings apply particularly to the problem of specifying which users have access to 

shared information. As mentioned earlier, Reeder et al. [86] observed that errors can occur in 
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access control specification, which is a widely accepted method of addressing this problem. 

These errors can lead to risk, such as our example TA Jana accidently granting a student access 

to view another student’s grades. Therefore, it seems necessary to provide methods that reduce 

risk while not incurring the effects of risk homeostasis that inadvertently lead to increased or 

unchanged risk. As mentioned previously, Wilde [111] stated one way to reduce overall risk is to 

reduce the perceived cost of cautious behavior. In the case of addressing which users to share 

with, this may mean reducing the cost of specifying users.  

2.2.4. CRITICISM OF RISK HOMEOSTASIS 

Since Wilde’s formulation of the theory of risk homeostasis [111], others have presented 

results that either directly criticize Wilde’s results or draw doubt to some of the claims of the 

theory. In particular, Cohen & Einav [5] performed further analysis on the link between fatality 

rates and seat belt usage with the goal of directly refuting some past results about seatbelts and 

fatalities, including Wilde’s. They did this in two ways that are in direct relation to Wilde’s 

work: They (1) distinguished between fatalities of individuals that could use seatbelts and 

fatalities of individuals that could not have used seatbelts (i.e. pedestrians, bicyclists, and 

motorcyclists), and they (2) fixed effects by state. 

The first method of distinguishing fatalities amongst individuals allowed determining if seat 

belt use raises risk high enough to indirectly cause fatalities in bystanders or occupants of other 

vehicles not using seatbelts but not high enough to influence the fatalities rate of occupants in 

vehicles with seatbelts. The second method of distinguishing by state is to reduce variability in 

the reported statistics of seat belt usage by state. As Cohen & Einav discussed, there may be a 

variety of reasons states vary in reporting these rates. For example, states may report higher seat-
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belt usage in order to receive higher federal funding, or states may use different method to 

observe seat-belt usage rates, which may have different levels of effectiveness. 

When both distinguishing by occupant and state, Cohen & Einav found the link between 

seat-belt usage and fatality rate to be either negative or statistically insignificant. In other words, 

with the adjusted analysis, fatality rates decreased as seat-belt rate increased, or there was no link 

between seat-belt usage and fatality rates. 

Kahneman & Tversky [59] did analysis on how users view and react to the chance of rewards 

or loss. Unlike the work of Cohen & Einav [5], they did not have the direct goal of refuting some 

of Wilde’s claims [111]. Instead, their goal was to study how individuals’ views on risk aversion 

changed when presented with potential gains versus potential losses. Cohen & Einav found that 

individuals were more risk seeking when presented with losses rather than gains. 

For example, individuals were presented with a problem where a disease would kill 600 

people if unaddressed. The individuals were then presented with two possible means to address 

the diseases. These options gave equal result, but one option was worded to showcase potential 

gains and the other showcased potential losses. In the case showcasing potential gains, users 

were presented with an option with less risk where 200 people will be saved with 100% certainty 

and another with more risk where there is a 1/3 probability that 600 people will be saved, and 2/3 

probability that no people will be saved. In the second case showcasing potential losses, users 

were presented with one option where it was a 100% chance that 400 people would die and a 

second, riskier option with a 1/3 probability that nobody will die and a 2/3 probability that 600 

people will die. 

Both options in both of these cases represent the same expected number of people saved 

(200) and the same expected number of people saved (400). However, 72% of participants chose 
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the first, more risk-averse option in the case showcasing potential gains, but only 22% of the 

same participants chose the more risk-averse option in the case showcasing potential losses. 

These results have particular impact on the Wilde’s theory of risk homeostasis, because they 

indicate that users change how they approximate risk depending on how the situation is 

presented. If a user is not consistent in how they approximate risk, the user may have a changing 

target risk level or it may be impossible to develop a method that converge on this target risk 

level.  

Despite these criticisms of the theory of risk homeostasis, it is not clear that the model is not 

helpful for judging the effectiveness of risk reduction. Cohen & Einav’s results only addressed 

issues with a single method for reducing risk which resulted in a reduction of risk. This does not 

indicate that other methods for reducing risk may yield higher risk in reality. Moreover, because 

Kahneman & Taversky’s results indicate that users may not always estimate risk incorrectly, it 

becomes more likely that users will incorrectly estimate the effect some risk reduction effort will 

have. Therefore, it becomes more likely that users will incorrectly deem whether some method of 

reducing risk is necessary and therefore more likely that users will incorrectly decide whether 

their actions are sufficiently safe. 

2.3. PREDICTION BASED ON PAST ACTIONS 

One way to reduce cost on the part of the user is to predict future actions that a user may 

take. Such predicted actions can be recommended to the user, which is an approach used by 

much of past work [31,45,55,69,86,88,91,96]. User costs may then be reduced, because users are 

not required to identify likely correct tasks, and the system may be able to perform the tasks it 

identifies in many cases.  
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This is in stark contrast to a system predicting and performing actions without user validation 

of the actions. As Fisher & Dourish [41] pointed out, without user validation, systems are likely 

to perform incorrect or inappropriate actions. Predictions may be incorrect because systems have 

missed important data or make predictions that are not meaningful. 

Greenberg & Witten [49] also recognized that predictions based on past actions can be 

helpful, but are not always appropriate or correct. Based on this observation, they wanted to 

study how users actually repeat past actions and how they use existing tools to replay past 

actions. To do so, they continuously collected the command-line data from 168 users using the 

Unix csh command interpreter. They found that overall, 74% of commands were reused and 

most commands were a repeat of one of the 7 commands immediately preceding them.  

Each of these users was categorized as a novice programmer, experienced programmer, 

computer scientist, or non-programmer. They found that each type of user reused commands at a 

different rate (p < 0.01), with experienced programmers reusing commands the most.  

Greenberg & Witten also looked at transforming the history of past commands to better 

match future commands. They tried three different approaches:  (1) context – restricting which 

commands are contained in a history by directory, (2) pruning – removing any older, duplicate 

commands from the history, and (3) partial matching – allowing past commands to match future 

commands if the past command is a prefix of the future one. They found transforming based on 

context decreased the number of overall repeated commands to 65%, but increased the chance 

that the immediate last 3 commands would match the current command. Pruning did not change 

the rate at which commands repeated, but commands were found earlier in the history. This is 

because past commands were not “blocked” by repetitions of later commands. Pattern matching 

significantly increased the rate at which commands were repeated to 84%. 
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If these findings from Greenberg & Witten are generalized, recommendations to reduce user 

cost based on a user’s past history may be better if the history is pruned of duplicates and partial 

matches are not required. Context based pruning of a history may also be helpful in some cases, 

but may also decrease the effectiveness in others.  

2.4. GROUP DETECTION 

One large cost associated with specifying users with whom to share information is 

remembering all users with whom it is possible to share and determining which of these possible 

users should be selected. First, it is necessary to remember all possible options. Second, for each 

possible option, it is necessary to decide a binary value, whether or not to select the option. 

Miller [75] found that users generally had difficulty completing these two tasks correctly due the 

limitations of their short-term memory. Users could only remember 5-7 elements from lists of 

digits, letters, or words and could at most correctly specify a portion of binary features of 

phonemes. This provides evidence that users may not be able to correctly remember more than 5-

7 possible users with whom to share. Furthermore, even if it was possible to remember all 

possible options, Miller’s findings suggest that the user would not likely be able to correctly 

decide whether or not to select each other user (which is a set of binary features). 

Miller [75] showed that by grouping individual items, a user can remember more items than 

if the items were not grouped. For example, users could only remember a limited number of 

characters individually, but they could remember more characters that were grouped into words. 

Furthermore, by deciding based on groups of options rather than individual options, the user may 

need to make fewer binary decisions about whether or not to select an option. This is consistent 

with the past approaches discussed above. As discussed earlier in section 2.1, Lampson [63], 
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Shen & Dewan [100], and Reeder et al. [86] all described approaches for having groups of users 

as subjects.  

However, in order to use these groups, users must first incur the cost of identifying and 

creating groups. They must also keep these groups up to date and efficiently organized. 

Therefore, it is likely that the creation and evolution of groups would benefit from predictions 

based on past user actions. Past work has done just that by using a variety of approaches. In order 

to discuss this past work, we divide it into two categories: creating a new set of groups and 

evolving existing groups. 

2.4.1. CREATING SETS OF GROUPS  

One way to use automation to assist with the specification of groups is to automatically 

create whole new sets of groups. A plethora of work falls in this area, covering systems such as 

role-based access control, community detection in large networks, social networks, and email. 

2.4.1.1. ROLE-BASED ACCESS CONTROL  

One approach that matches well with the previously described access controls schemes is 

role mining, which is used in role-based access control (RBAC). In RBAC, as described by 

Vaidya et al. [107], users are mapped to roles and roles are mapped to permissions (or 

object/right pairs). Multiple users may have the same role and users may have multiple roles, 

indicating that roles match the groups described by previous work. Moreover, roles can be 

dynamic, where one can change subjects that hold a role and the rights associated with a role. 

This means they match discussions of dynamic groups in past work covering the access matrix 

[86,100].  

Role mining seeks to automatically determine new roles for RBAC. Vaidya et al. discuss two 

methods for doing so, top-down and bottom-up. Top-down takes existing groups of users (such 

as those based on existing business processes) and decomposes them into functional units (or 
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units that have the same tasks). These functional units are then converted into roles by assigning 

them permissions. Vaidya et al. pointed out that this approach has two significant drawbacks: 

determining functional units required feedback from some authority, and the generated roles may 

ignore existing permissions specified in the system. 

On the other hand, bottom-up takes existing subject-permission assignments and aggregates 

them into roles. More specifically, subjects are usually grouped by shared permissions, and a role 

is assigned permissions based on the intersection of permissions assigned to its assigned subjects. 

This case also has drawbacks. Because these roles are formed independent of any existing 

groups, bottom-up ignores the existing groups. Vaidya et al. also pointed out that it is difficult to 

formally specify the goodness or interestingness of a role, which may determine how subjects are 

grouped in the bottom-up approach.  

2.4.1.2. COMMUNITY DETECTION 

This idea of group creation extends into areas other than role mining. For example, work in 

the area of network mining has employed group creation in the form of community detection. 

Community detection seeks to find highly connected or similarly featured communities in 

different networks, such as citation networks [83],  free-associations networks of words [83], 

biological networks [83], and social networks [13,15,74,83]. If such networks have nodes that 

are subjects, it is then possible to use these groups to determine with whom to share some 

information. 

In this area of community detection, there is a rich amount of work detecting non-

overlapping groups [83]. However, groups for controlling who to share information with tend to 

overlap. For example, our previously described example TA Jana is in the group Comp 101 TAs. 

In addition, she may also be in the group PhD Students since PhD students often serve as TAs. 

This means there is an overlap between the Comp 101 TAs and PhD Students groups. 
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Therefore, we focused on approaches that allowed overlapping communities in their detection 

algorithms. 

To the best of our  knowledge, the first discussion of automatically detecting overlapping 

communities was done by Palla et al. in a letter to Nature [83]. This work sought to find such 

overlapping communities in general undirected and unweighted graphs.  Moreover, the sources 

of these graphs were not restricted to information sharing domains.  Such graphs can come from 

a variety of other areas, such as protein interaction networks or word similarity networks. 

To find communities, Palla et al. first found all k-cliques in a graph. Then a community was 

defined as the union of all k-cliques that can be reached through adjacent k-cliques. Adjacent k-

cliques were then defined as k-cliques that shared k-1 nodes in the graph. This then allowed 

overlapping communities when k-cliques shared less than k-1 but greater than 0 members. As, 

Palla et al. pointed out, this algorithm relies on an undirected and unweighted graph. However, 

they also presented a way to convert a weighted and/or directed graph to an undirected and 

unweighted one for use with their approach.  All directed edges would be treated as undirected 

edges and edges that have weights that fall below some threshold w would be dropped from the 

graph. 

To test this approach, they used a co-authorship network of the Los Alamos e-print archives, 

a dataset of free associations between words from the University of South Florida, and the 

protein-protein interactions of Saccharomyces cervisiae from the Database of Interacting 

Proteins. They then varied the initial clique size k from 3 to 6 and selected the edge-weight 

threshold w such that the largest community was twice the size of the smallest community.  

The resultant communities were then analyzed in terms of the power law.  Specifically, past 

work had found that the size of communities followed a power law distribution, and Palla et al. 
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wanted to determine whether this also held for the sizes of their communities.  When a 

community’s size was measured as the number of nodes in the community, they found this 

power law distribution fit.  However, when size was measured as the degree of a community, or 

the number of other communities with which the community overlaps, the power law did not fit. 

For smaller degree values, they observed an exponential distribution.  This then transitioned to a 

power-law distribution for larger degree values. This deviates from the results of their analysis of 

past work in non-overlapping communities. They also found that the size of overlaps between 

communities tended to match the power-law. 

2.4.1.3. EGO SOCIAL NETWORKS  

As mentioned previously, Palla et al.’s work was targeted at general graphs or networks that 

may not come from information sharing domains.  Following their work in identifying 

overlapping groups, other work sought to focus new approaches for detecting overlapping groups 

specifically in social networks the domain of internet communities.  Such targeting can be 

helpful for a variety of reasons, such as determining with whom to share information or for 

understanding how people are organized socially.  Moreover, some systems in this domain, such 

as LiveJournal, Twitter, Facebook, and Google+, already supported the manual creation of such 

groups. As past work observed, such groups may be more useful if groups could be created 

automatically rather than manually. 

In order to target to such systems, past work has largely focused on predicting groups for an 

individual user based on the user’s ego social networks [15,45,74]. A single user’s ego social 

network contains only his friends or connections as nodes. Those nodes only have edges if there 

is an edge between them in the global social network and it is visible to the owner of the ego 

network (e.g. he can see that the nodes are friends or that they co-occur in some document). 
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Bacon & Dewan [15] and Friggeri et al. [45] took a common approach to finding 

communities in these ego networks, which has four steps. First, they identify initial sets of 

candidate groups from an undirected, unlabeled social graph by determining some basic 

structures in the graph in the graph. Second, they repeatedly merge any candidate groups with 

other nodes or candidate groups that are sufficiently similar based on some metric. Third, they 

determine if the merged groups contain any sub-groups. Fourth, they present the merged groups 

and any subgroups as community predictions. Bacon & Dewan [15] and Friggeri et al. [45] only 

differed in the metrics to determine whether candidate groups were close enough to merge, 

whether they identified sub-groups, and the dataset on which they performed their evaluations. 

Bacon & Dewan only merged candidate groups with other candidate groups and not 

individual nodes. They determined whether a larger candidate group A should be merged with 

smaller candidate group B based on the relative similarity and difference between the members 

of the two groups. If the relative similarity (
|𝐴∩𝐵|

|𝐵|
) was above some threshold S and the relative 

difference (
|𝐵−𝐴|

|𝐵|
) was below some other threshold D then the two groups should be merged. 

Then subgroups were determined by removing all edges and nodes from the graph not contained 

in any large merged groups (groups larger than 50 members). The same algorithm was then rerun 

on the pruned graph to find merged groups, which were used as subgroups.  These two steps 

necessitated two different sets of thresholds S and D. They used 1 and 0.15 for initial groups, and 

0.9 and 0.35 for subgroups, respectively. 

To evaluate this approach, Bacon & Dewan recruited 21 participants. Each of these 

participants was asked to submit their ego networks from their friend relationships on Facebook. 

Bacon & Dewan then generated predicted group sets, and participants were asked to edit their 

respective set of group. The edited sets of groups were then treated as ground truth. Only 10 
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participants completed all these tasks and had ideal groups that could be parsed and analyzed. Of 

these 10 participants, 50% had no missing groups and only 1 had predictions that missed more 

20% of the groups. They also evaluated predicted groups based on how much participants must 

edit the predicted groups using a metric Bacon & Dewan called goodness. The goodness between 

a predicted group P and an ideal group I is measured as (
|𝑃∩𝐼|

|𝑃|
), and the goodness of a predicted 

group P is measured as the maximum goodness across all ideal groups. They found the vast 

majority of their predicted groups had a goodness of 1, meaning no changes were necessary to 

convert predictions to ground truth in most cases. 

Friggeri et al. [45] performed merges with candidate groups using the metric cohesion. 

Cohesion is based on triangles, where a triangle is defined as a set of three nodes in the social 

graph with edges between each node. The cohesion C(g) of a group g, is defined as follows 

𝐶(𝑔) =  
∆𝑖(𝑔)

(
|𝑔|

3
)
∙

∆𝑖(𝑔)

∆𝑖(𝑔) + ∆𝑜(𝑔)
 

In this equation, 
∆𝑖(𝑔)

(
|𝑔|
3
)
 is the density of triangles within g. Intuitively, the higher the density, 

the more closely the members of the group are connected, and, thus, the more likely that g is a 

good group. This density relies on two parts, a numerator  ∆𝑖(𝑔) and a denominator (
|𝑔|

3
). The 

value ∆𝑖(𝑔) is the number of internal triangles, or triangles who have all nodes within g, and the 

value (
|𝑔|

3
) is the maximum possible triangles that could occur in g.  

This density of triangles is then multiplied by the percentage of all triangles with two nodes 

within g that are internal (have all nodes within g) rather than external (have one node not in g). 

The greater the percentage of these triangles that are internal to g, the more likely that g is a good 

group and its own and should not be merged with any nodes in the graph external to g. This 
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percentage of internal triangles is represented by the value 
∆𝑖(𝑔)

∆𝑖(𝑔)+∆𝑜(𝑔)
, where ∆𝑖(𝑔) is the number 

of internal triangles and ∆𝑜(𝑔) is the number of outgoing triangles.  

Friggeri et al. then used this cohesion measure to grow groups. Individual nodes were 

greedily merged with candidate groups to maximize cohesion. 

Friggeri et al., like Bacon & Dewan, evaluated this approach using Facebook data. They 

developed their own web app, which collected participants’ data and generated predictions on 

participants’ local machines. Participants then rated groups out of 4 stars and submitted their 

rating to Friggeri et al. Following the rating of all groups, participants were recruited virally by 

requesting participants to post a recruitment message on their walls after completing their part of 

the study. This allowed them to collect data from 2635 participants. 

Their main goal was to evaluate cohesion as a metric. Therefore, they did not report the 

overall distribution of ratings. However, based on analysis of average rating by cohesion values, 

they found such values were linearly correlated (r=0.97, p=2e-67). To compare, they measured 

rating in comparison to edge density, or number of edges in a group divided by the maximal 

edges in a group. Note that this edge density is different from triangle density used in the 

calculation of cohesion.  They found no such linear correlation between rating and density. 

However, they did find that rating did increase with density, when density was greater than 1/3. 

McAuley & Leskovec [74] also automatically determined sets of groups that should be 

created for an ego network, but took an approach based on features shared among users (such as 

gender, hometown, university, work location, and political affiliation) rather than relationships 

among users as Bacon & Dewan [15] and Friggeri et al. [45] did. They determined the 

probability that an edge existed between two users x and y, 𝑃((𝑥, 𝑦)), based on whether they 

existed together in a group C and which features x and y shared.  
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𝑃((𝑥, 𝑦)) = exp { ∑ 𝜙(𝑥, 𝑦) ∙ 𝜃𝑘
𝐶𝑘 ⊇{𝑥,𝑦}

− ∑ 𝛼𝑘𝜙(𝑥, 𝑦) ∙ 𝜃𝑘
𝐶𝑘 ⊉{𝑥,𝑦}

} 

In this equation, 𝜙(𝑥, 𝑦) is a binary vector where 𝜙(𝑥, 𝑦)𝑖 is true if x and y share feature i, 𝜃𝑘 

is a weight vector, and 𝛼𝑘 is a constant used for tradeoff. 

Based on this probability, McAuley & Leskovec [74] were able to determine the log-

likelihood of a graph G and its edges E given a set of groups C using the equation below, which 

sums together the log-likelihood that all edges in E exist (∑ log 𝑃(𝑒)𝑒∈𝐸 )  and subtracts the 

summed log-likelihood that all edges not in E do not exist (∑ log(1 − 𝑃(𝑒))𝑒∉𝐸 ): 

𝑙𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝐺; 𝐶) =∑log𝑃(𝑒)

𝑒∈𝐸

+∑log(1 − 𝑃(𝑒))

𝑒∉𝐸

 

Using the log-likelihood, they then treated groups as latent variables and performed 

coordinate ascent to maximize the log-likelihood with a 𝑙1 regularization (∑ ∑ |𝜃𝑘𝑖|𝑖𝑘 ). 

They then tested this approach using 10 Facebook ego networks, 133 Google+ ego networks, 

and 1000 Twitter ego networks. In these datasets, Facebook users had 26 features from user 

profiles, Google+ users had 6 profile features, and Twitter users had two features (hashtags and 

mentions). Each of these networks had existing ground truth groups which they compared 

against. In Facebook these were private groups participants had volunteered, and in Google+ and 

Twitter these were public groups that had been crawled. 

They compared their predicted groups to ground truth using the maximal bounded error rate 

(or the average of false positive rate and false negative rate). They found that in their Facebook 

data they had a 16% error rate in the best case while Google+ and Twitter datasets had higher 

error rates of 28% and 30%, respectively. They reasoned that because this is likely due to the fact 

that the Facebook ground truth is more complete because it consists of all groups that users 
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created. In comparison, the Google+ and Twitter data may have been missing some groups that 

were not shared publically in their assumed ground truth groups. 

It is important to note that McAuley & Leskovec are not unique in their use of features from 

users’ profiles for the assisting of creating groups. Amershi et al. [6] and Squicciarini et al. [104] 

both used features from Facebook user profiles to recommend groups. Amershi et al. used a 

Naïve Bayes Classifier to suggest new members to a group a user is currently creating, and 

Squicciarini et al. used the Apriori algorithm to group users in an ego network. 

2.4.1.4. EMAIL 

Groups may also be helpful in email, because groups can be added to the recipient fields 

discussed above, or users can be grouped behind a listserv address. Fisher & Dourish [41] were 

perhaps one of the first to analyze how such groups may be identified in email based ego 

networks based on past actions in collaboration. They developed a tool called Soylent which 

forms visualizations of collaboration graphs based on email communications. In these graphs, 

nodes are users that have been included in at least 3 messages and edges exist when users have 

been included in the same email. Soylent also allowed the temporal replaying of graphs. During 

these replays, users could then filter views in of graphs in a variety of ways, such as by time or 

sparsity. 

They then gave 15 members of a software development firm a tutorial on Soylent, and had 

them use the application for a few days. Based on discussions with the participants, they found 

that the participants had observed certain groups in their graphs. They also observed that four 

graph structures coincided with these groups across participants:  

 Onion Pattern – This structure, shown in Figure 4(a), is made up of a core of users and a 

periphery of users. This usually corresponded to a project with a central team and a number 

of consultants who have some input. 
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 Nexus Pattern – This structure, shown in Figure 4(b), is made up of a spoke pattern. The 

central user (denoted by the red arrow in the figure) was usually a collaborator in multiple 

projects. 

 Butterfly pattern – This structure, shown in Figure 4(c), is made up of a single node with two 

large “wings” made up of nodes and edges. This pattern contained a central user who served 

two roles, such as being a member of both a design and a research team. 

 

Fisher & Dourish found that these patterns occurred regularly, were findable by users, and 

implied meaningful groups. These properties indicate they may be helpful to users to identify 

groups for determining with whom to share information.  

To the best of our knowledge, only MacLean et al. [69] went beyond the work of Fisher & 

Dourish to directly predict groups in email that users may use to address messages. To 

accomplish this, they used an approach similar to those of Bacon & Dewan [15] and Friggeri 

[45] in social networks. They first determined candidate groups from a user’s sent mail. These 

candidate groups were initially determined as unique recipient sets (or the union of the TO, CC, 

(a) Onion Pattern (b) Nexus Pattern (c) Butterfly Pattern 

Figure 4. Patterns Observed by Fisher & Dourish [9] in  collaboration graphs 
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and BCC fields) from sent messages. They then removed any candidate groups that were only 

included in a small number of messages according to some threshold.  

From this the pruned set of candidate groups, they then merged groups according to 

subsumption relationships. They determined whether group A should subsume B based on 

whether A is a superset of B and the information leak of addressing A instead of B fell below 

some threshold. Information leak was defined as 

𝑙𝑒𝑎𝑘(𝐴, 𝐵) =
(|𝐴| − |𝐵|) ∙ (𝑚𝑠𝑔𝑠(𝐵) − 𝑚𝑠𝑔𝑠(𝐴))

|𝐴| ∙ 𝑚𝑠𝑔𝑠(𝐵)
 

After subsuming groups, they then merged any groups that should be unified. Unification 

two groups A and B was done based on Jaccard coefficient (
|𝐴∩𝐵|

|𝐴∪𝐵|
). If this similarity was above 

some threshold, the two groups would be merged. Finally, the remaining groups were organized 

into a hierarchy and presented to users in a novel hierarchical interface called SocialFlow which 

was developed by them. Users could then use this interface to edit the predicted set of groups. 

This interface is shown in Figure 5. 

 

Figure 5. SocialFlow Hierarchical Interface 
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To evaluate their approach and interface, they recruited 19 participants. The participants were 

asked to create groups for four different artificial tasks. Participants created these groups using 

both the Gmail Contact Manager, which is included in Gmail and did not use predicted groups, 

and the new SocialFlow interface. 10 participants used the Gmail interface first and 9 used the 

Social Flow interface. They found no significant difference in results between these two groups. 

However, across all users, they found the SocialFlow interface to be more effective. Only 42% of 

users were satisfied with groups from Gmail, while 72% were satisfied when using SocialFlow.  

They also found that users were more likely to give up when using the Gmail interface either 

because it was too hard or they became bored.  Participants were also faster to form groups and 

more likely to find groups useful for the assigned task if they formed them using the SocialFlow 

interface. 

2.4.2. UPDATING SETS OF GROUPS  

There are many cases where users do not need or want to create a new set of groups. Users 

may have already created a set of groups and need to update them based on changing situations, 

such as needing to share information with new users or changing relationships or roles. For 

example, the TA Jana is a member of Comp 101 TAs. However, the following semester she may 

be a TA for a different, existing course (Comp 590), but some other TAs from the past semester 

have kept their positions as TAs for Comp 101 and Comp 590. This means that the groups Comp 

101 TAs and  Comp 590 TAs likely do not need to be created. However, the members of Comp 

101 TAs should change to at least remove Jana and Jana should be added to the group Comp 590 

TAs. Therefore, it is useful to develop approaches that predict how an existing set of groups 

should be updated. 
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2.4.2.1. EVOLUTION OF SOCIAL GRAPHS 

As mentioned previously, many approaches for creating groups require the mining of social 

graphs. Therefore, it follows that if one is to accurately update groups as the social graph 

changes, it would be useful to also model how social graphs can change. Accurate modeling of 

social graph evolution can lead to accurate models of how groups within graphs will change. 

Moreover, with an accurate graph evolution model, it is possible to generate synthetic data that 

matches reality. This synthetic data can then be used to more rigorously test methods of updating 

groups that may not be able to be tested using user real data for a variety of reasons, such as 

privacy issues. 

Some of past work has addressed the issue of modeling how graphs change. However, not all 

of these approaches were directly developed for social graphs and therefore, may not apply to the 

problem of updating groups. 

One such general approach for modeling graph change was developed by Dowell & Bruno 

[38] for modeling large networks of remote sensors.  In such a network, various sensors are 

distributed in the field (i.e. a Euclidean space) and employ a communication network to relay 

information or share processing power. In this communication network, nodes are sensors in the 

network. Edges are formed to communicate amongst nodes and ensure no part of the network is 

separated from the rest. However, these sensors are often limited in power, and thus cannot 

communicate over a large space. Therefore, the further two nodes are apart in Euclidean space, 

the less likely it is that an edge will form between them. Conversely, the closer two nodes are to 

each other, the more like it is that an edge will form between them. 

Intuitively, it is not clear that this approach is compatible with social graphs. Edges in a 

social graph are not necessarily dependent on the Euclidean distance between the nodes they are 

connecting. In a social graph, two nodes that are a large Euclidean distance apart when plotted 
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geometrically may still have an edge connecting them, or, similarly, two nodes that have a small 

Euclidean distance may not have an edge between them. 

Other work has specifically investigated whether the Euclidean distance of two social graph 

nodes will influence the future creation of edges in the graph. For example, Wang et al. [109] 

predicted how links would form in a large social graph of mobile phone users. In this social 

graph, nodes represented mobile phone users and the presence of an edge between two nodes 

indicates that one node called the other. The proximity of two phones was determined by the 

towers to which the mobile phones connected, where if the phones had some towers in common, 

they were marked as close in proximity. Using this proximity as a feature for predicting future 

links, Wang et al. found that by combining proximity measures with previously-tested, edge-

based network metrics (e.g. number of common neighbors or Adamic-Adar [1]) as features they 

could achieve a higher predictive power than using edge-based metrics alone. 

Similarly, Scholz et al. [97] took into account proximity when looking at social networks of 

individuals with edges denoting communication between people by studying face-to-face 

communication networks amongst academic conference attendees. However, instead of using 

proximity to predict edges as done by Wang et al., Scholz et al. directly determined whether 

individuals were in close proximity to each other. In their studies, each participant had an RFID 

tag which could detect any other tags within 1.5 meters. Two participants were then assumed to 

be in face-to-face communication (and thus an edge existed between them) if the RFID tags 

could detect each other for at least 20 seconds and were not apart for more than 60 seconds. 

Their goal was to predict if a new edge would occur or if an edge would reoccur between 

participants. 
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To make these predictions, they used previously-tested, edge-based network metrics for 

features as Wang et al. did. In addition, they also used features particular to academic conference 

attendees and to their data collection approach, the conference attendee’s role in the conference 

(e.g. session chair), the attendee’s academic status (i.e. Professor, PhD, PhD-candidate, or other), 

how many papers the attendee had previously published in the conference, how many papers the 

attendee had published in each of the conference tracks, the number of past face-to-face 

communications of two attendees, and the duration of last face-to-face communication of two 

attendees. Across two conferences they studied, Wang et al. found that edge-based metrics 

weighted by the length of conversations yielded better predictions of new links. Conversely, they 

found that edge-based metrics weighed by the number of previous conversations yielded better 

predictions of reoccurring links. 

However, it is important to note that Scholz et al.’s work may not be applicable to social 

graphs for computer-based sharing systems. In many cases, these systems are put into place 

specifically because they do not require face-to-face communications. Consider Stack Overflow, 

which allows users to seek out expert answers to questions without users knowing the identity of 

experts ahead of time or contacting experts directly. This is in stark contrast to face-to-face 

communication networks, where individuals must know and approach specific individuals with 

whom they wish to communicate. Therefore, the model for evolution in social graphs may be 

fundamentally different for computer-based sharing systems, since there may be different factors 

that drive creation or reoccurrence of edges between communicating individuals. 

In addition to the work of Wang et al. and Scholz et al., other work has modeled large social 

graph growth, but without the use of real-world proximity measures. In particular, there has been 

a large amount of success using the power law. This law states that the number of nodes with 
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degree d is proportional to the value 1/d
α
 where α ≥ 0. Using this relationship, when a vertex is 

added to a graph at time t, it will connect to some existing vertex with probability dv,t/2et where 

dv,t is the degree of vertex v at time t and et is the number of edges in the graph at time t [16, 17]. 

Existence of the power law has been shown in large graph representations, such as citation 

networks [13] or collaboration graphs of movie actors [17] and thus such graphs have been 

effectively modeled using the above technique. However, smaller graphs have been shown to be 

more difficult to approximate with the power-law [17]. 

Some social graphs, such as those mentioned above are sufficiently large such that the 

power-law applies or is likely to apply. However the past work of ourselves and others have 

observed that the ego-networks of individuals, that is the graph that only contains vertices one 

edge from a chosen individual, tend not to large enough to conform to the power-law [14,20]. 

Moreover, because large social graphs tend to follow the power-law and small social graphs tend 

not to, it indicates there may be more differences in the models of evolution of the two types of 

social graphs. This then indicates that other models that have been developed for large social 

graphs, such as those mentioned previously [97,109] may not be applicable for smaller social 

graphs. 

2.4.2.2. ROLE-BASED ACCESS CONTROL 

Other work has gone beyond modeling social graph evolution and has directly predicted how 

groups within a social graph should update in a variety of systems, such as RBAC. As mentioned 

previously in section 2.4.1.1, Vaidya et al. [107] described methods to create new sets of roles 

for RBAC. In addition, they also developed a method to update a set of roles. Their goal was 

create roles that minimally changed the existing set of roles, but would also cover any new 

subjects or permissions. They called this the minimal perturbation problem. However, they 

determined that finding an optimal solution to minimal perturbation is NP-Hard. 
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Therefore, instead of creating algorithm to solve the problem optimally, they developed a 

heuristic algorithm. In this algorithm, they used an existing approach to generate a candidate set 

of roles C that may replace an existing set of roles R. They selected the predicted set of roles P 

by greedily selecting roles from C until all rights were covered by roles in P. To compare 

candidate roles in C for the greedy algorithm, they used a score that combined the amount of 

additional rights covered by a candidate role 𝐶𝑘 (denoted as 𝑎𝑟𝑒𝑎(𝐶𝑘, 𝑃) ) and the maximum 

Jaccard coefficient between the candidate role and existing roles in R (denoted as 𝑠𝑖𝑚(𝐶𝑘, 𝑅) ).  

To combine these they assigned a weight w between 0 and 1 for Jaccard similarity and an inverse 

of this weight (1-w) for the newly covered rights.  They then combined the weighted scores into 

a single score with the following equation:  

𝑠𝑐𝑜𝑟𝑒(𝐶𝑘) = (1 − 𝑤) ∙ 𝑐𝑎𝑟𝑒𝑎(𝐶𝑘, 𝑃) + 𝑤 ∙ 𝑠𝑖𝑚(𝐶𝑘, 𝑅) 

This approach’s use of Jaccard coefficient also supports the link between roles and groups in 

other systems. As mentioned in section 2.4.1.4, MacLean et al. [69] also used this measure to 

effectively create a set of groups in email. 

They did not evaluate this approach in terms of how acceptable users viewed these updates to 

the roles. However, they did vary w in the scoring function. They found that as they increased w, 

P was larger and more similar to R, which they judged to be good results. They also evaluated 

the computational complexity of their algorithm, which they determined to be 𝑂(𝑛2) where n is 

the number of users. This is a significant improvement over the finding the optimal solution, 

which, as already stated, is an NP-Hard problem. 

2.4.2.3. SOCIAL NETWORKS 

Backstrom et al. [13] also analyzed how past sets of groups may change. However, they 

instead of targeting RBAC, they sought to understand how individual groups in social networks 
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may evolve in terms of membership or topic. They conducted this analysis in terms of three ways 

that individual groups can change: a single member joining a group, the rate at which a group 

grows in size, and a change in the topic or focus that a group is centered around. To address each 

of these areas of group change, they analyzed groups on the blogging site LiveJournal and 

conference participants according to DBLP. 

First, they first looked at whether the number of friends in a group was linked to whether a 

member joined a group. In LiveJournal, friends were determined by relationships specified by 

users, and, in DBLP, users were friends if they had coauthored a paper together. In both cases, 

they found that users more often joined a group when they had a higher number of friends in the 

group. However, Backstrom et al. also found this effect showed diminishing returns. In other 

words, the higher the number of friends a user had in a group, the less the number of friends 

contributed to the likelihood the user would join the group. They then analyzed the effect of a 

number of other features (such as edges, triangles, posts, or papers in or from the group) using 

decision trees. They split trees based on maximum entropy and evaluated results using area 

under the ROC curve, accuracy, and cross entropy. They found in both LiveJournal and DBLP, 

their predictions using all features rather than just number of friends were better with respect to 

all three metrics. 

Second, to address group growth, they first analyzed the distribution of group growth rates. 

They found that overall groups had a mean growth rate of 18.6% and a median rate of 12.7%. 

Based on these findings they treated predicting growth rate as a binary classification problem, 

where they predicted groups as have a low growth rate (<9%) or a large growth rate (>18%). 

They again used binary decision trees to predict whether a group would have a large or small 
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growth rate. They found that using all features was better than predicting growth using only a 

single feature. 

Third, to address change in topic or focus in group, Backstrom et al. used only DBLP data. 

This is because conferences in the DBLP are inherently centered around certain topics, which 

can be inferred based on words in paper titles. If a term occurs frequently enough in a given time 

period, it can be considered a “hot topic.”  Using these hot topics, they could determine whether 

two conferences came into alignment if they share the same hot topic in a given year. They also 

found that using previously hot terms in a paper were followed by individuals moving from one 

conference to another, while using current or future hot terms did not indicate as such.  

2.5. PREDICTING USERS WITH WHOM TO SHARE 

Predicting named groups is an example of persistent groups created in batch outside of the 

context of a particular message. Because groups are not tied to use in a particular message, users 

may not view the effort  necessary to create or maintain such groups as worthwhile effort. 

Therefore, in many cases, users may not have exerted such effort. However, regardless of 

whether such persistent groups exist, many messages must be addressed to certain ephemeral 

groups of recipients. 

These ephemeral groups may be effectively specified using persistent named groups. 

However, such a task is not possible if users have exerted the effort to create or maintain such 

persistent groups, as previously mentioned. Therefore, it is useful to develop methods for 

assisting with the creation of ephemeral groups on a per message basis. In particular, past work 

and work concurrent with our own have assisted with this task by predicting lists of subjects or 

users to whom a message should be addressed.  
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Such predictions reduce user costs in a variety of cases. Users are not required to enter long 

email ids or names. Moreover, these predictions allow users to share with other users whose ids 

or names they cannot recall, which may be likely in cases with large numbers of recipients or 

complicated naming conventions. 

Carvalho & Cohen [31] also stated per message recipient prediction is an important problem 

to solve based on their observations in the Enron Email Corpus, which contains the email 

accounts of 150 users. Carvalho & Cohen searched for messages containing the terms sorry, 

forgot, or accident. From these messages, they found that at least 9.27% of users forgot to add a 

desired recipient at least once, and at least 20.52% of recipients were forgotten at least once. 

2.5.1. CONTENT-BASED PREDICTIONS 

To address these issues, Carvalho and Cohen applied multiple approaches to email to make 

primary predictions (predictions for addressing TO, CC, and BCC fields) and secondary predictions 

(predictions for addressing only the CC and BCC fields).  Based on past successful work in expert 

detection, Carvalho & Cohen focused on making predictions based on the terms (or content) 

contained in messages. 

To do so, they presented users with lists of candidate recipients which were ordered by some 

scoring function. They presented and tested six different approaches to score a candidate 

recipient, c, based on a query message q: 

1. Expert Search Model 1 – The score of a candidate c is based on the probability that the 

candidate is an expert on the terms in the query message. This probability is measured using 

based related work in expert detection [18].  This probability is the same as the probability of 

a candidate being an expert in all terms in a document. The probability for each term is a 

weighted sum (weights assigned by a constant 𝜆) of the probability of a term appearing at all 
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and the adjusted probability of the term appearing in each message m. The probability of a 

term is adjusted based on a score 𝑓(𝑚, 𝑐), which can be computed in two different ways, as 

shown in the following equation:  

𝑓(𝑚, 𝑐) =

{
 

 
1

|𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑤𝑖𝑡ℎ 𝑐|
 , 𝐷𝐶 

1

|𝑅𝑒𝑐𝑖𝑝𝑖𝑒𝑛𝑡𝑠 𝑖𝑛 𝑚|
, 𝑈𝐶

 

The first is document-centric (DC) and is the inverse frequency of messages containing the 

candidate. The second is user-centric, and is the inverse of the number of recipients in m. To 

give the probability of a user being an expert, the values are combined into the following 

equation: 

𝑠𝑐𝑜𝑟𝑒(𝑐, 𝑞) = ∏ {(1 − 𝜆)( ∑ 𝑝(𝑡𝑒𝑟𝑚|𝑚)𝑓(𝑚, 𝑐)
𝑚𝜖𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠

 𝑤𝑖𝑡ℎ 𝑐

)+ 𝜆 ∙ 𝑝(𝑡𝑒𝑟𝑚)}

𝑡𝑒𝑟𝑚∈𝑞

 

2. Expert Search Model 2 – Again they used the probability that the candidate c was an expert,  

but with a model from work in expert detection [18].  This model is similar to the first one, 

but with a few key differences. Probability for more terms is decreased exponentially if there 

are more terms in in the query message q. This ensures one term cannot overpower all others.  

This approach also computes the probability that the candidate recipient c is an expert in all 

terms of some message, rather than that the candidate recipient is an expert of all terms, 

regardless of message. To do so, the probability of expertise about a particular past message 

is calculated as the multiplied probabilities of expertise in each term in the messages. Then to 

achieve the probability of expertise in some current message, the probabilities of each past 

message are summed together: 
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𝑠𝑐𝑜𝑟𝑒(𝑐, 𝑞) = ∑ { ∏ [(1 − 𝜆) ∙ 𝑝(𝑡𝑒𝑟𝑚|𝑚) + 𝜆 ∙ 𝑝(𝑡𝑒𝑟𝑚)]|𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑞|

𝑡𝑒𝑟𝑚∈𝑞

}𝑓(𝑚, 𝑐)
𝑚𝜖𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠

 𝑤𝑖𝑡ℎ 𝑐

 

The value for 𝜆 and 𝑓(𝑚, 𝑐) were determined the same way as in the first expert model. 

3. TF-IDF – This approach is based on the formula 𝑡𝑓𝑖𝑑𝑓(𝑡𝑒𝑟𝑚,𝑚) = log(𝑓𝑟𝑒𝑞(𝑡𝑒𝑟𝑚,𝑚) +

1) log (
|𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠|

𝐷𝐹(𝑡𝑒𝑟𝑚)
) where 𝑓𝑟𝑒𝑞(𝑡𝑒𝑟𝑚,𝑚) is the number of times the term occurs in m and 

𝐷𝐹(𝑡𝑒𝑟𝑚) is the number of messages that contain the term. They could then generate a 

vector 𝑡𝑓𝑖𝑑𝑓(𝑚)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   of tf-idf values for each message m. Each candidate recipient c is made up 

of a history multiple messages.  Therefore, to represent a candidate’s vector, multiple 

messages’ vector need to be combined into a single vector. This single vector is computed as 

a centroid vector where the combined vector is a weighted sum of all the messages’ vectors. 

This weighted sum uses two weights 𝛼 and 𝛽, which are used to weight messages with and 

without c, respectively. This yields the following equation: 

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑐)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

= (
𝛼

|
𝑀𝑒𝑠𝑠𝑠𝑎𝑔𝑒𝑠
𝑤𝑖𝑡ℎ 𝑐

|
) ∑ 𝑡𝑓𝑖𝑑𝑓(𝑚)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑚𝜖𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠
 𝑤𝑖𝑡ℎ 𝑐

+ (
𝛽

|
𝑀𝑒𝑠𝑠𝑠𝑎𝑔𝑒𝑠
𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐

|
) ∑ 𝑡𝑓𝑖𝑑𝑓(𝑚)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑚𝜖𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠
 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐

 

The 𝑠𝑐𝑜𝑟𝑒(𝑐, 𝑞) in this case was then calculated as  

𝑠𝑐𝑜𝑟𝑒(𝑐, 𝑞) = cos ( 𝑡𝑓𝑖𝑑𝑓(𝑞)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑐)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) 
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4. KNN – They found the k nearest messages (called 𝑁(𝑞)) to the query message q, where 

distance was determined using cos between their respective tf-idf vectors. The score was then 

calculated as 

𝑠𝑐𝑜𝑟𝑒(𝑐, 𝑞) =  ∑ cos (𝑡𝑓𝑖𝑑𝑓(𝑞)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑡𝑓𝑖𝑑𝑓(𝑚)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) ∙ {
1, 𝑚 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑐
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

𝑚𝜖𝑁(𝑞)

 

5. Frequency – 𝑠𝑐𝑜𝑟𝑒(𝑐, 𝑞) = |𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 𝑤𝑖𝑡ℎ 𝑐| 

6. Recency – Using a formula 𝑡𝑖𝑚𝑒𝑅𝑎𝑛𝑘(𝑚) which returns how many messages back one must 

go to retrieve m if messages are sorted chronologically, they determined score as follows: 

𝑠𝑐𝑜𝑟𝑒(𝑐, 𝑞) = ∑ 𝑒
(
−𝑡𝑖𝑚𝑒𝑅𝑎𝑛𝑘(𝑚)

𝜆
)

𝑚𝜖𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠
 𝑤𝑖𝑡ℎ 𝑐

 

To test each of these approaches, Carvalho & Cohen randomly selected 36 accounts from the 

Enron email corpus. Also for each of these approaches, they attempted to group messages into 

threads by looking for P messages and grouping messages that had the same subject sans RE: of 

FWD: prefixes. If a message was the first in its thread, they would use whichever of the 6 

methods above the particular experiment called for. If it was not the first, then they would predict 

only recipients seen previously in the thread. 

For both primary and secondary predictions, they found KNN with a k=30 to have the 

highest precision, correct predictions higher in lists, and the most number of correct recipients 

predicted for a given list  (p < 0.05). Moreover, these results were even better when they used 

threads. They also tried fusing methods by scoring a candidate c as the sum of its rank from each 

fused method. These fusion methods showed a significant improvement over only KNN in most 

cases. 
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2.5.2. CONNECTION-BASED PREDICTIONS 

Roth et al. [91], a research team at Google working concurrently to our own work, also 

predicted which users should be included in an email message, but they based their predictions 

on how users are connected to each other rather than the content of messages. Like MacLean et 

al. [69], they inferred connections between individuals based on co-occurrence of those 

individuals in past email messages. However, unlike MacLean et al, their graph was a 

hypergraph, where edges can exist between individual nodes or groups of nodes. Each time a 

message occurred with a sender s and a set of recipients R, an edge would be added between a 

node for s and a node for R. Therefore, nodes could represent single users or groups of users.  

Roth et al. [91] determined implicit groups in email by finding hypernodes in their 

hypergraph. These are similar to those found by MacLean et al. [69], as described in section 

2.4.1.4. However, Roth et al. did not make these groups accessible to users, and therefore these 

groups could not be viewed or edited, let alone addressed in email messages. 

Instead, Roth et al. used the groups in this graph to ranked candidate recipients for a given 

message m. These rankings were based on how close the recipient was tied to the sender and how 

close the groups that recipient’s groups were to the already specified recipients of m. Therefore 

based on these two requirements, Roth et al. limited their predictions to messages where at least 

two of the recipients were already known. These known recipients are treated as a set called a 

seed.  

To determine similarity between an account owner and a group, they wanted to use three 

features: frequency, recency, and direction of past communication. Frequency and recency are 

both related to and based on the previously described work of Carvalho & Cohen [31] in section 

2.5.1. Direction is based on the intuition that groups initiated by the owner of an email account 
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(i.e. formed by sending a message) are more significant than messages received by the owner of 

an account. Messages received can be from mass mailings, spam, etc. which would not be reused 

by the owner. Groups formed by sent messages, on the other hand, are more likely to be used by 

the account owner. 

These features were combined using the equation below to measure the score of a group g. In 

this equation, 𝑀𝑜𝑢𝑡,𝑔 is the set of messages that were sent by account owner and contained all 

members of g, 𝑀𝑖𝑛,𝑔 is the set of messages that were received by account owner and contained 

all members of g, 𝜔𝑜𝑢𝑡 is a constant denotes the relative importance of sent messages, 𝑡(𝑚) is 

the time of message m, 𝑡𝑛𝑜𝑤 is the current time, and λ is a constant denoting how quickly old 

messages should lose importance.  

𝑠𝑐𝑜𝑟𝑒(𝑔) = 𝜔𝑜𝑢𝑡 ∑ (
1

2
)

𝑡𝑛𝑜𝑤−𝑡(𝑚)
𝜆

𝑚∈𝑀𝑜𝑢𝑡,𝑔

+ ∑ (
1

2
)

𝑡𝑛𝑜𝑤−𝑡(𝑚)
𝜆

𝑚∈𝑀𝑖𝑛,𝑔

 

The similarity of a group to a message m was determined by the score of the group, whether 

or not the group intersected with the seed (a 0 or 1 similarity), the size of the intersection, or 

some combination of these values through multiplication. The similarity of an individual was 

then measured as a sum of the similarities of the groups of which he was a member. 

To test this approach, they randomly sampled 10,000 emails from Gmail which had between 

3 and 25 recipients, predicted at most the top 4 candidate recipients, and evaluated predictions 

using precision and recall curves. They found that using a combination of intersection size and 

score worked best with a combination of score and presence of intersection coming in a close 

second. 

They also applied this approach in two features of Gmail called “Don’t Forget Bob” and 

“Got the Wrong Bob”. “Don’t Forget Bob” is a direct application of the approach used in testing 
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added to the Gmail interface as shown in Figure 6(a). “Got the Wrong Bob” instead tries to use 

predicted candidates to determine if they should replace an existing member of the seed. 

Candidate replacements are determined by iteratively removing a member of the seed and 

predicting a set of candidate recipients. If a candidate recipient is close in name to the removed 

seed member, the candidate recipient is a candidate replacement for that seed member. These 

replacements are both then displayed in the interface shown in Figure 6(b). 

 

1. Don’t Forget Bob interface 

 

2. Got the Wrong Bob interface 

Figure 6. Interfaces for Roth et al. Applications 

Both the “Don’t Forget Bob” and the “Got the Wrong Bob” features have been enabled and 

used by hundreds of thousands of users. Also, informal surveys have indicated that users found 

both features helpful. This indicates that Roth et al.’s approach is effective in at least some cases 

and, more generally, predicting users with whom to share can be effective in at least some cases.  
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2.6. IDENTIFYING FEATURES ABOUT USERS  

Even if users have created groups and are able to address additional users with predictions, 

there may be multiple possible solutions to the question of with whom to share. For example, a 

student may have to decide whether to share a question about homework with Comp 101 TAs, 

Comp 101 Instructors, Comp 101 Students, or some limited number of TAs, instructors, 

and/or students.  

This task of deciding among multiple solutions may be made easier by knowing 

discriminating features such as how users will rate some message or post, whether users are 

available, or when users will respond. For example, the student above may choose to only share 

information with users who are available to answer his question and will respond before his 

homework deadline. More generally, users may be granted access to shared information based on 

desirable features, or users may have restricted access based on undesirable features. If more 

features of users are known, it may be easier to query for users or to compare candidate users. 

2.6.1. USER RATING  

One of these features identified and predicted by past work is the rating a user would like to 

give to some shared item. For example, if one knows a user will give a high rating to a shared 

post, it is more likely that user should receive that shared post. Conversely, if the user would give 

a low rating, it is likely it is not worth the cost to share the post with that user. 

One of the earliest approaches to predict ratings of a message is that of Resnick et al. [87]. 

They developed a tool called GroupLens that attempts to predict the rating (out of 1-5) a user 

would give to a Usenet post. To make these predictions they used an approach called 

collaborative filtering. In this approach a matrix representation of user-item-rating relationships 

is used. In this matrix, rows are users, columns are items, and the value in cell (u,i) is the rating 
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user u gave to item i. From this matrix, a user could be represented as a vector of ratings which 

corresponded to his row. Users’ ratings could then be correlated based on their ratings vectors 

using the Pearson Correlation Coefficient. This is represented by the following correlation for 

two users u and v: 

𝑐𝑜𝑟𝑟(𝑢, 𝑣) =
∑ (𝑢𝑖 − �̅�)(𝑣𝑖 − �̅�)𝑖

√∑ (𝑢𝑖 − �̅�)2𝑖 √∑ (𝑣𝑖 − �̅�)2𝑖

 

Then the predicted rating for item i with respect to a user u is then computed using the 

following weighted average of other users R that have already rated i: 

𝑝𝑟𝑒𝑑𝑖𝑐𝑖𝑜𝑛(𝑢, 𝑖) = �̅� +
∑ (𝑣𝑖 − �̅�)𝑐𝑜𝑟𝑟(𝑢, 𝑣)𝑣𝜖𝑅

∑ |𝑐𝑜𝑟𝑟(𝑢, 𝑣)|𝑣𝜖𝑅
 

They did not evaluate how this approach’s predictions match with users’ ratings in reality. 

However, they did show how it could be implemented in existing Usenet infrastructure. They 

added the ability for users to rate Usenet posts and the ability to display predicting ratings in 

existing user interfaces. Figure 7(a) shows how users may specify their rating for a particular 

post, and Figure 7(b) shows the display of predicted ratings using colored bars where longer bars 

indicate higher predicted ratings. 

 

Figure 7. Rating Functionality Added to Usenet Readers by Resnick et al. 

(a) Functionality to allow for users to rate Usenet posts (b) Functionality to show predicted ratings 
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Later work has expanded on this idea of using collaborative filtering. In particular the work 

of Sarwar et al. [96] expanded on this idea by looking at similar items rather than similar users. 

In fact, this work can be inferred as a direct continuation of that of Resnick et al., because they 

share John Riedl as an author. However, unlike Resnick et al., Sarwar et al. predicted ratings 

based on ratings of similar items rather than similar users. 

They combined these ratings of similar items using two approaches, weighted average or 

regression. The weighted approach relies on a similarity metric sim(i,j) between two items i and j 

and combines them in the following formula for predicting what rating user u will give an item i 

and user u’s rating for item j is represented as 𝑢𝑗: 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐴𝑣𝑔(𝑢, 𝑖) =
∑ 𝑢𝑗 ∙ 𝑠𝑖𝑚(𝑖, 𝑗)𝑗∈𝑎𝑙𝑙 𝑖𝑡𝑒𝑚𝑠 𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑢

∑ |𝑠𝑖𝑚(𝑖, 𝑗)|𝑗∈𝑎𝑙𝑙 𝑖𝑡𝑒𝑚𝑠 𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑢
 

The regression approach makes use of this same weighted average formula, with one change. 

The value 𝑢𝑗  is replaces with 𝑢𝑗
′ in order to adjust for variable ways in which a user assigned 

ratings over time. This new value is determined by the following linear model, whose parameters 

α and β are determined by linear regression and ε is the error of the model. 

𝑢𝑗
′ = 𝛼 ∙ 𝑢𝑗 + 𝛽 + 𝜀 

For both approaches, they used three different calculations to determine similarity between 

two items: cosine, correlation, and adjusted cosine. Cosine similarity has a vector for each item i 

and j which is the respective column in the matrix of ratings defined previously. Cosine 

similarity is then defined as 

𝑠𝑖𝑚𝑐𝑜𝑠(𝑖, 𝑗) = cos(𝑖 , 𝑗 ) =
𝑖 ∙ 𝑗 

‖𝑖 ‖2 ∗ ‖𝑗 ‖2
 

Both correlation and adjusted cosine similarities require a set of users U that have rated both 

item i and j. The formulas for each are then defined as follows: 
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𝑠𝑖𝑚𝑐𝑜𝑟𝑟(𝑖, 𝑗) =
∑ (𝑢𝑖 − 𝑖)̅(𝑢𝑗 − 𝑗)̅𝑢𝜖𝑈

√∑ (𝑢𝑖 − 𝑖)̅𝑢𝜖𝑈
2√∑ (𝑢𝑗 − 𝑗)̅𝑢𝜖𝑈

2
 

𝑠𝑖𝑚𝑎𝑑𝑗𝐶𝑜𝑠(𝑖, 𝑗) =
∑ (𝑢𝑖 − �̅�)(𝑢𝑗 − �̅�)𝑢𝜖𝑈

√∑ (𝑢𝑖 − �̅�)𝑢𝜖𝑈
2√∑ (𝑢𝑗 − �̅�)𝑢𝜖𝑈

2
 

They evaluated these item-based approaches against the past user-based approaches on a 

collection of 100,000 movie ratings made by 43000 users on over 3500 different movies. They 

evaluated these predictions using Mean Absolute Error, and found cosine similarity to be the best 

performing similarity measure and item-based weighted average approach to be better than an 

item-based regression approach or a user-based approach. They also analyzed their item-based 

approach in terms of the size of the training sets and number of similar items used to predict 

ratings. They found fewer errors as the training set grew in size, but throughput decreased 

significantly. They also found that the larger the number of possible similar items they allowed, 

the less error there was in their results. However, after 25 possible similar items, this change was 

not significantly large. 

2.6.2. SUBSEQUENT USER ACTION 

Rating a message or post is only one of many ways a user can react to a shared message or 

post. Other work has explored how users would react based on the actions they would take. If 

one knows which course of action some recipients will take after receiving a message, they may 

know whether another set of recipients should be shared with in addition to or instead of the 

current set. For example, if student knows that the group Comp 101 Students will not answer a 

question, then they may ask Comp 101 TAs instead.  
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2.6.2.1. GENERAL ANALYSIS OF SUBSEQUENT ACTIONS  

Several pieces of past work have performed general analysis on subsequent actions users take 

on receiving shared messages or posts. These analyses have covered a variety of systems 

including Stack Overflow, Email, and Usenet. 

2.6.2.1.1. Stack Overflow 

Mamykina et al. [71] analyzed subsequent user actions generally for the internet community 

Stack Overflow, but did not make predictions. Stack Overflow is a Q&A site geared around 

technical responses which, as of August 2010, has 300,000 registered users and over 7 million 

monthly visits. Mamykina et al. sought to confirm past observations that questions on the site 

had fast answers and high quality answers, and to determine the reasons behind the speed and 

quality. To accomplish these goals, they analyzed a public data dump of the first two years of the 

sites questions with creative commons licenses and surveyed 2 founders of the site, 4 members 

of the design team, and 6 users. 

Mamykina et al. did indeed confirm that questions tended to receive fast responses. They 

found median times of 11 minutes to the first answer, 10:52 minutes to the first answer with the 

positive vote, and 21:10 minutes to the answer accepted by the poster of the question. Moreover, 

these response times were similar values since the sites inception. However, they also observed 

long tails in the distribution of response times. For example, the mean time to the first answer 

was over 2 days. 

They also were also able to analyze and classify users based on the public data dump. They 

found that the number of questions and answers a user posted tended to follow the power law. In 

other words, more active users occur exponentially less often. Moreover they found that users 

who were more active tended to post more answers than questions. Based on the rate at which 
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users posted and the time frame at which users posted, they classified users into one of four 

groups: (1) community activists – users active on the site for many months, (2) shooting star – 

users who have only a short burst of high activity, (3) low-profile – users with intermittent but 

never high activity, and (4) lurkers and visitors – users, possibly without accounts, who do not 

post. 

While they make up only 1% of the community, Mamykina et al. found that community 

activists accounted for 27.8% of the answers.  They posited that this is because of the game 

mechanics of voting on the site encouraged such behavior, and therefore much of the speed and 

quality of the site.  Users earned reputation based on positive votes on their questions or answers, 

which in turn led to increased ability to edit and contribute to the site. It was thought that such a 

reward system would recruit community members who are highly active. This was further 

confirmed by findings in their survey that users viewed the site as similar to game “World of 

Warcraft” where they tried to reach the maximum reputation for each day. 

They also found that the answer speed and quality could be partially attributed to the scope of 

the site. With a strict definition of what is allowed in the site it is easy for users to define what is 

allowed and find questions they can sufficiently answer quickly. This is supported by the speed 

at which Mamykina et al. observed sister sites about other similar limited topics grew. Moreover, 

the founders were able to quickly gain a critical mass of contributors because they had lengthy 

ties to communities that fell in this limited scope.  

2.6.2.1.2. Email 

Dabbish et al. [35] also generally analyzed subsequent user actions in email. They conducted 

a survey of 124 users of Carnegie Mellon University’s email system (38 faculty, 40 staff 

members, 46 students). In this survey they asked participants about the complexity of their jobs 
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(number of projects, subordinates, meetings per day, etc.), email patterns (number of messages 

sent, received, stored in the inbox, etc.), and details about the 5 most recent non-spam messages 

in their inboxes. 

In this study they found that on average they kept over 1300 messages in their inboxes, but 

faculty tended to keep more than any other group (p < 0.0001). They also found that 59% of 

respondents either sorted messages into folder as soon as they read them or tried to minimize the 

size of their inboxes. They labeled this type of user as frequent filers based on their intended 

actions of storing messages someplace other than the inbox. The remainder of users were 

classified as spring cleaners or no filers, because they tended to empty their inboxes after long 

periods or never at all. 

Using the users’ responses about messages in their inboxes (containing 581 messages in 

total) they were also able to make observations about specific message content and subsequent 

actions. They allowed users to specify a message as having eight types of content: (1) request for 

action, (2) request for information, (3) attached information, (4) status update, (5) scheduling, (6) 

reminder, (7) social, and (8) other. They also had participants classify the messages importance 

(according to a Likert scale), their relationship with the message’s sender. Finally they asked 

users about two types of actions they would take on a message, (1) where they would file the 

message (delete, move to another folder, or keep in the inbox) or (2) whether they would reply 

(no reply required, immediate reply required, or postponed reply).  

They found that 79% of users left messages in the inbox, and regardless of reply action they 

were more likely to keep the message in the inbox than any other option. They also observed 

64% of messages were reported as not requiring a reply (a value they felt was strikingly low).  

They then used mixed model regression to determine weights of features of messages and 
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whether a message would be kept in the inbox or if a message would receive a reply. Then to 

determine how a single feature f was linked to the tested actions, they fixed all other features at 

their mean value and varied f one standard deviation around its mean.  

They found that only the importance of a message and cases when users postponed replying 

to a message were significantly linked (p < 0.05) to whether a message was kept in the inbox. 

They posited that this may be because users intended to use the inbox as a reminder of a need to 

act on a message. However, additional results seemed to refute this claim. In particular, users did 

tend to store messages with requests for action or reminders in their inboxes, indicating they did 

not use inboxes as a memory aid. 

Dabbish et al. also found that the importance of a message and whether it contained an 

information request or social message were positively linked to whether a user would respond or 

not. They also found that a larger number recipients or a work relationship with the sender 

contributed were linked to a lower chance that a user would respond to a message. 

While they did not explicitly test how their findings would work as predictions on real world, 

Dabbish et al.’s work is particularly interesting for future work in predicting subsequent user 

actions. These are possibly significant features that could be used to make predictions using 

techniques from the fields of machine learning or data mining. 

2.6.2.1.3. Usenet 

Arguello et al. [8] also performed analysis about user actions.  However, they focused their 

efforts on Usenet rather than email, and had a specific goal of determining how to make 

successful communities. In particular, they felt communities would be successful if they offered 

a high responsiveness to posts and if individuals returned to post in the same community. Like 

Dabbish et al. they used regression to determine which features were tied to these types of user 
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actions. After training feature weights by regression, the effect of a given individual feature was 

determined by fixing all other features at their mean value and changing only the individual 

feature. 

To conduct their study they used a collection of one year’s worth of Usenet messages from 

March 2001 to March 2002 from 2 health support groups, 3 politics groups, and 3 sports groups 

that were not replies to any previous message. This dataset contained 6174 messages, 72.9% of 

which had received replies. Moreover, 49.1 % of the users in this sample posted again after their 

initial post. 

With this data set, they set to link features to two dependent binary variables, GotReply 

(whether a message would receive a reply) and PostAgain (whether the user would post again). 

In total, they looked at 28 independent variables or features. These features covered a variety of 

categories, including the community identity, the message’s context (i.e. whether the message 

was cross-posted or whether the poster was a newcomer), the rhetoric (i.e. whether the message 

contained a testimonial or question), the complexity of the language in the message, and word 

choice (e.g. the use of first or third person pronouns). 

They found that many features were significantly linked to whether a response would occur, 

including the identity of the group, whether the poster was a newcomer, whether the message 

contained a question or testimonial, the average number of words per sentence, or the use of first 

or third person pronouns. Far fewer features were significantly linked to the whether a user 

would post again. Of the original features, only community identity and the whether the poster 

was a newcomer were significantly linked. However, if they included the feature GotReply, it 

was significantly linked to whether a user would post again.  
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As with Dabbish et al.’s work described in the immediately previous section, these are 

possibly significant features that could be used to make predictions with data mining or machine 

learning prediction techniques. However, as Arguello et al. pointed out, more work is necessary 

before these features can be assumed to be generally applicable for use in such prediction 

techniques. Their results were limited to a small number of Usenet communities and only 

determined correlation relationships and not causal ones. Still, their work provides a jumping off 

point of a number of features that may be applicable in a variety of future works.  

2.6.2.2. RESPONSE TIME  

Kalman & Rafaeli [60] also looked at subsequent user action in email, but restricted 

themselves to how long a user would take to respond.  They chose to look at this action, because, 

as they pointed out, human communication normally needs to act in synchrony, which is based 

on timing and sequencing. To study this action, they looked at the Enron Email Corpus. 

Like Mamykina et al. [71], they only analyzed a data set and did not make predictions. 

However, before they could analyze, they needed to clean it and associate responses with their 

original messages. They restricted their responses to only messages in the sent folders. This way 

they would restrict their response time profiles to the account owners. From these responses, they 

removed all messages that were empty, did not have exactly one sender, or were duplicates of 

some other message. They determined reply messages from this cleaned dataset as messages 

with “Re:” in the subject. Each reply message was assumed to contain the message to which it 

was replying, and messages were paired accordingly. The response times were then determined 

based on the difference in timestamps between message pairs.  

Within this cleaned and paired data, they found 16,093 responses amongst 144 separate 

accounts. These had an average response time of 28.8 hours.   They also found that users tended 

to respond quickly. Over 97% of users responded to 30% of emails within one day and 70% of 
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emails with 5 days. Across messages, these were even stronger results. 84% of all replies were 

created with 24 hours and 50% are created within 2-3 hours. They also found that for response 

times up to 10 days, the distribution of response times fit a Gamma distribution.  This was 

consistent with previous findings that users expected a response in 24 hours because social 

pressure would lead to most results to fall within this limit. 

Kalman & Rafaeli also observed some messages that had negative results. Most of these 

negative response times were between 0 and -5 hours, with some even less than -5 hours. They 

hypothesized this was due to inaccuracies or imprecisions in collecting time either because of 

concurrency issues, time zones, or daylight savings time changes. Therefore, they posited that 

email response time results have a granularity of at least a few hours. 

While these results do not make predictions about response times, they are helpful for future 

prediction work. If predictions are made for similar populations or using similar technology, it is 

likely they will fit similar distributions and have similar levels of granularity. Therefore, it may 

be possible to develop baselines for future prediction approaches from this work.  

To our knowledge, only two pieces of past work have gone beyond analysis to make 

predictions about response time, Avrahami & Hudson [11] and Wang [110].  Avrahami & 

Hudson focused their predictions in the domain of instant messages (IMs), specifically on the IM 

tool Trillian Pro.  On the other hand, Wang focused predictions on the MSDN forums in the 

communities domain.  In both cases, successful predictions were made using machine learning 

techniques. 

Avrahami & Hudson sought to predict when a user would receive a response in a given IM 

session. A session was defined as an exchange of instant messages between two users where no 
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two messages a have a delay larger than some threshold.  They chose to test thresholds of both 5 

and 10 minutes based on prior analysis. 

For each message in each session, they collected information about the IM exchange (such as 

day of week, hour in day, time since the last message, and whether it is the first message in the 

session), as well as OS information (such as the which application has the focus, most used app 

used in the last m minutes, the amount of key presses in the past m minutes, and the amount of 

mouse presses in the past m minutes).  Using this information collected with each message as 

features, they used decision trees to classify whether messages would receive a response in 30 

seconds, 1 minute, 2 minutes, 5 minutes, or 10 minutes.  To classify, decision trees were built 

incrementally by adding and testing features.  The model stops changing when no feature can be 

added such that it will improve the performance of the model. 

Avrahami & Hudson then evaluated the accuracy of this decision tree approach by 

comparing the accuracy of each assigned category to a baseline accuracy of randomly classifying 

messages. This random classification was based on the prior probability of a message being 

classified into each category without knowledge of features. Ultimately, they found that the 

decision tree approach outperformed the baseline by a significant amount for every category, 

with the worst case category achieving over 77% accuracy with their decision tree-based 

approach. Comparatively, the best baseline category had a prior probability of just over 75%. 

These successful decision tree approaches made use of a variety of their features, with the top 

chosen features using both IM-based and OS-based features.  

On the other hand, Wang’s work [110], which is unpublished as of this writing and 

contemporaneous to our own, sought to predict when questions would receive responses in the 

C# forum of the Microsoft Developer Network (MSDN).  A variety of features were analyzed to 
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make these predictions: length of the original message asking the question, whether contextual 

information (such as an error code or stack trace) was given, whether code snippets were 

provided, whether the title of the post was general or specific, the readability of the question’s 

language, and the difficulty of the question.  These features were extracted using both automated 

methods and human participants to manually classify questions.  These features were then used 

in a regression-based machine learning approach to predict response time of questions. 

Ultimately, only four features were linked to response time with some significance: the presence 

of code snippets, specific rather than general titles, and the difficulty of the question. 

Despite the success of predicting response time in both these cases, they both come with 

certain limitations.  The work of Avraham & Hudson was targeted at and tested on response time 

for the IM domain. As mentioned previously, this is an entirely different domain than those that 

are the focus of our work, email and internet communities.  As mentioned previously in Chapter 

1, although IM supports asynchronous collaboration, users tend to treat it as synchronous 

because of social pressure. This difference in method of collaboration may fundamentally change 

the patterns that affect response, and thus may mean that Avraham & Hudson’s approach is not 

applicable to email or communities.  Furthermore, Avraham & Hudson’s work requires the 

collection of additional features for OS information, for which Avraham & Hudson had to create 

additional tools.  Such tools may require significant time and effort to create, and may not be 

allowed in certain situations due to the sensitive data they may collect. 

Wang’s work does address the domains focused on in our work.  However, it is limited to a 

very particular type of technical knowledge, the programming language C#.  The author himself 

specifically mentions that some features may not even extend to other programming languages or 

technical topics, let alone other non-technical topics. There are many such cases where messages 
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do not have such a limited scope in topic.  For example, users may ask questions through email 

or forums like Stack Overflow and Piazza which cover much broader topics than C#.  

Furthermore, the response time predictions required features that some user extracted manually.  

In systems with large numbers of such questions, such as Stack Overflow with over 3 million 

questions, this is not feasible. Therefore, it is useful to develop methods for predicting response 

time in systems without such a limited topic scope and with features that do not require manual 

extraction.   

Despite their limitations, these pieces of past work provide evidence that predicting response 

time in communities and email is likely to be possible.  Moreover, they indicate possible features 

and approaches that may be helpful in making such predictions.  It may be possible to carry this 

work further by making such predictions in the domains of email and communities without 

requiring additional tools or human analysis to extract features for such predictions. 

2.6.2.3. AVAILABILITY  

Generally, users cannot perform any of the previously identified subsequent action if they are 

not available to react to shared information. Moreover, if it is possible to determine if a recipient 

is available, it is also possible to make determinations about whether they can be interrupted, 

whether they will receive messages, or which device they will access. A variety of past work has 

analyzed this area and made predictions about whether a given user is available. 

Horvitz et al. [55] looked at predicting this particular feature. To do so, they initially 

extended a Microsoft Research project called Priorities which detected whether users were 

present at their desktop to schedule notifications based on computer activity (e.g. keyboard and 

mouse actions). If users were detected as not present, notifications would be sent to users’ 

mobile devices rather than their desktops. 
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Horvitz et al. wished to expand this to predict when users would return to their desktops. This 

goal was based on three possible future applications. The first application would determine when 

people were not present, but would return soon. In this case, non-urgent notifications could be 

delayed rather than sent to mobile, where they may be intrusive. The second application would 

allow users to automatically block off portions of their calendar until they were likely to return. 

Their third and final application would include auto-reply features in email. If an email arrived 

when users were away from their desks, the system could auto-reply that they are away and offer 

a prediction of when they may return in the auto-replies.  

To make the predictions necessary for these applications, they looked at the probability 

distributions of time people were away from their desks based on Priority’s logs. They chose 

their features for predictions based on this analysis and past work on availability. In particular, 

they chose time of day, computer activity, calendar information, video data, ambient microphone 

data, and localization data from WIFI or GPS when available as features to predict availability. 

For each query about availability, they would then generate a Bayesian network. For example if 

a query only concerned morning times, the Bayesian network would be built only from past data 

points about morning times. 

In order to augment these predictions, Horvitz et al. also wanted to include, as features, 

whether users were attending a meeting and interruptible at a meeting during away periods. 

Rather than rely on users specifying this information, they made predictions. They used decision 

trees to make these predictions using features of the calendar events such as date and time, 

organizer, location, duration, and response status. They used 559 appointments to train their 

model and an additional 100 to test their predictions. Overall, they were 92% accurate when 

predicting attendance and 81% accurate for interruptibility. 
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Horvitz et al. then created alternate models for predicting availability that also used their 

attendance and interruptibility predictions as features (in addition to the previous features). These 

led to a stark difference in probability distributions. In particular, the addition of attendance and 

interruptibility led to significantly longer away times for the probability levels. 

Czerwinski et al. [34] also directly worked in generating predictions about interruptibility of 

users. In particular, they looked at how interruptions from instant message notifications affect 

users’ primary tasks. Considering Eric Horvitz was listed as an author of both works and 

Czerwinski et al. predates Horvitz et al., it is likely that this work in interruptions helped 

determine whether they would predict an attended event as interruptible or not. 

To study the effect of interruption, Czerwinski et al. looked at the whether users could react 

to the notification of a new instant message. They recruited 12 users to complete two types of 

searching tasks with a list of book titles: (1) easier tasks of finding an exact title in the list and (2) 

more difficult tasks of finding a title based on a general description. As users performed these 

tasks, the researchers interrupted the participants at different points with instant messages 

containing math problems the participants were required to solve. 

Even when adjusting for the time it took to switch from keyboard to mouse and the time to 

solve the math problem, Czerwinski et al. found that users more quickly found the correct titles 

without interruptions from notifications. Moreover, their notifications more reliably increased the 

time to complete easier search task than the more difficult one. Czerwinski et al. reason this may 

be because to handle notifications in the easier case users needed to disengage and reengage 

high-speed visual scanning mechanisms rather than cognitive processing algorithms. 

Both the work of Czerwinski et al. and Horvitz et al. are important for many other types of 

subsequent user actions. If it is possible to predict that a user will not be available and 
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interruptible, then it is also possible to predict that the same user cannot take any reactionary 

actions to the received message or post. Therefore, the approaches and features identified by 

Czerwinski et al. and Horvitz et al. may generally apply to approaches seeking to predict the 

absence of a wide category of subsequent actions. 

2.7. CONCLUSION 

As illustrated throughout this discussion, there is a wealth of work spanning many decades 

that has addressed the problem of with whom to share. This work has (1) developed systems and 

user interfaces for specifying how resources are shared, (2) determined how users view the 

security of shared information, (2) determined actions users take to address security or risk, (3) 

identified or updated of groups of users who may be shared with as a single unit, (4) identified 

which users a given message or post should likely be shared with, and (5) identified features of 

users with whom messages or posts may be shared. 

In some cases, past work performed studies to identify the important aspects of sharing. In 

other cases, they made predictions about future sharing actions. Even with this large coverage of 

past work, there is still much of this space that is uncovered. 

To the best of our knowledge, no work has analyzed how new predictive tools would affect a 

user’s risk. Would they adjust a user’s target risk level in accordance with the Theory of Risk 

Homeostasis?  Would users overestimate the helpfulness of predictive tools, possibly leading to 

increased risk? 

Past group prediction techniques were not triggered automatically. Researchers chose only 

specific times to generate predictions about their set of groups. However, this implies that, in real 

world scenarios, users would have to choose when to generate such predictions. This may 

impose more cost on the user. Instead, are there better ways to make predictions about groups 
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such that the predictions are triggered automatically or as they are necessary, but without input 

from users? 

Previous work that predicted users to include in a message or post allowed the selection of 

only one user at a time but presented lists of multiple users. This can be problematic if users 

must handle multiple lists, each of which contain more than one correct recipient. Requiring 

users to determine whether or not to select each item from a list can be much more costly if there 

is more than one correct answer. Is there a better way to group items within a predicted list so 

that users may select multiple items without exerting the additional effort of grouping items in 

the list together? 

Past work has also done a large amount of analysis on features that are linked to the response 

time of a message or post. However, to our knowledge, no work has actually predicted whether a 

message will receive a response. Is it possible to effectively predict when a message or post will 

receive a response? 

The answers to these research questions are currently unaddressed as of yet. Our work seeks 

to move towards addressing them, using this wealth of past work as a foundation to build upon. 
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3. EVALUATION 

So far we have focused on the design of interactive predictive systems (or systems that 

involve both predictions and user interaction), but we have not considered evaluation as a first 

class issue. Of course, without any evaluation, a recommender system cannot be shown to be 

better than a random guess in any cases, and therefore is not useful. However, as Shani & 

Gunawardana  [99] argued, evaluation techniques must also be matched to the goals and users of 

a system. 

To illustrate, consider if all recommender systems were evaluated by the metric of accuracy, 

which can be computed as the percentage of recommendations that matched users’ choices. 

Despite the fact that this metric is simple and widely-used, it fails to capture certain key issues. 

For example, it may miss when systems fail to generate any recommendations, correct or 

incorrect; when systems only recommend items users have seen before and never novel items; or 

when systems take an inordinately long time to generate recommendations. If these issues are not 

addressed, users may find a recommender system unacceptable, because it does not generate 

recommendations often enough, does not suggest new, interesting items, or slows down their 

progress, respectively. 

To remedy such problems, a wealth of past work has looked into or applied various 

evaluation approaches and metrics that can apply to interactive predictive systems. These 

approaches vary from how they set up experiments to how they fit or measure a model to how 

they determine the significance of results. These approaches are not necessarily applicable to all 

interactive predictive systems. Therefore, they must be analyzed properly before applying to any 
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such system. Even if an evaluation of such a system yields results that seem promising, if the 

evaluation approach was not properly matched to the system and its goals, the system may not be 

useful in realistic situations. 

Before diving into this discussion of how to properly evaluate interactive predictive systems, 

it is important to point out that many of these approaches and metrics are decades or centuries 

old. Therefore, not only has this work had time to propagate through a wide range of fields of 

study, but some may predate the study of interactive predictive systems in general. Even though 

the discussion of these evaluation techniques will be framed with a focus on such systems, it is 

important to keep in mind that these techniques have a wide range of application outside of this 

area. 

3.1. TYPES OF EXPERIMENTS 

One of the first questions to answer when evaluating a recommender or predictive system is 

how to set up the evaluation experiments. Shani & Gunawardana  [99] classified evaluation 

experiments into three general types: 

1. Offline experiments – Evaluation is performed by the generation and testing of predictions 

using previously collected logs or datasets. 

2. User studies – Evaluation is performed with direct observing and questioning of a small 

set of potential users of the recommender system. 

3. Online experiments – Multiple test systems are deployed to be used by actual users in 

actual scenarios that require the predictions.  

The comparative features of these experiment types are shown in Table 2.  
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As the table indicates, each type of experiments has its strengths and weaknesses. Because 

they deal with past data from logs or other records, offline experiments can accommodate both 

large and small scale experiments. However, since this approach attempts to replicate rather than 

record user reactions to recommendations, researchers conducting this type of experiment must 

have an accurate model of how users will react and metrics for measuring these reactions. This 

means it is not possible to record qualitative user reactions to recommendations. However, that is 

not to say that such models are inaccurate or that researchers are required to develop such models 

from scratch. There have been a variety of models of human reactions developed that have been 

shown to be useful a wide range of situations [12,29,40,80]. Such models include the GOMS 

model [29], which models user reactions primarily as keystrokes or mouse clicks, and the model 

of emotional design [80], which attempts to determine the emotions with which a user will react 

and the subsequent actions that an emotion will trigger.  

However, properly choosing a model that fits a given system and scenario to which the 

system will be applied can be difficult. Neither user studies nor online experiments have this 

drawback, as Table 2 indicates. Both user studies and online experiments involve the observation 

or recording of live user actions as they interact with the system. As a result, it is possible to 

collect qualitative reactions to the system and its predictions. Online experiments do this by 

replacing some existing system with the candidate system or systems to see how users react to or 

Table 2. General types of evaluation experiments 

Experiment 

Type Scale Costly 

Qualitative 

user 

responses 

Requires 

model of user 

behavior 

Offline 

Experiment 
Large/Small No No Yes 

User Study Small Yes Yes No 

Online 

Experiment 
Large Yes Yes No 
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use the new system(s) in actual scenarios. User studies do not deploy the system in the field, but 

rather attempt to replicate realistic situations in a lab with recruited study participants. By 

observing and/or communicating with these participants, it is possible to obtain both quantitative 

and qualitative response data. 

Neither user studies nor online experiments are without drawbacks, as Table 2 also indicates. 

Both these approaches require the recruitment and observation of users, which can be costly in 

terms of both time and resources. In the case of user studies, because each participant must be 

observed and/or communicated with, this type of experiment requires significantly more 

resources be devoted to each user than the other types of experiments. These additional resources 

tend to limit the size of user studies to a much small scale of users.  

Online experiments, because they often do not require the direct observation of users by 

researchers, are not limited to smaller scales. However, because the experiment must be 

deployed with an in-use system, care must be taken to ensure the system does not interfere or 

hinder the in-use system’s necessary tasks. Moreover, often online experiments involve testing 

multiple candidate systems, which means that participants are also often unaware of which 

candidate system they are using. This ignorance on the part of the participants helps reduce the 

chance of bias from participants consciously or subconsciously choosing a preference for one 

system ahead of time. However, this means that a single participant often cannot use multiple 

different candidate systems, because the participant may, by comparing multiple candidates, be 

able to identify details about the candidate systems. These details about the systems may 

introduce bias such that the participant may determine a system as good or bad when they not 

make the same determination if they could compare the multiple candidate systems. This means 



 

78 

 

that to ensure significantly sized samples for each of the candidates (for more on significance of 

results, see section 3.1.3), online experiments often must be large in scale.  

3.1.1. REDUCING BIAS 

Though these are general descriptions of experiments, one can go further in refinement of the 

experiments design to reduce bias when incorporating participants into experiments. Past work 

has observed two large sources of bias from users: (1) Paid participants in a study tend to try to 

please the goals of the researchers conducting the experiment, and participants may change their 

actions or responses based the order in which things are presented [99]. 

Because participants may change their actions based on payment, in many cases, researchers 

should reveal the goals of a study to the participants when participants are provided 

compensation. By postponing the revealing of goals to the participants until after the experiment 

has completed, it is less likely a conscious or subconscious motivation to please those conducting 

the experiment will bias result by taking some option in the study that would not have been taken 

in reality.  

On the other hand, there are some cases where researchers may want to tell participants about 

goals to drive certain actions. For example, the previously mentioned work by Wimberly & 

Liebrock [112] attempted to encourage participants of their user study to use effective  security 

measures by telling participants that compensation for the study was dependent on the 

effectiveness of their security measures. 

The other source of bias past work has found is the order in which tasks are presented. For 

example, if two recommendations are presented where the first is very bad, participants may rate 

the second recommendation higher than they would normally [99]. Moreover, if a participant is 

asked to complete two high effort tasks, the participant may grow weary enough to not fully 
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complete the second task. Therefore, the second task may have a worse result than it normally 

would have. 

A commonly used method to avoid such biases due to the order in which things are presented 

is the Latin square design [53]. Originally, Latin squares were not developed for experimental 

design, and were instead originally used as supernatural wards as early as 1000 C.E. [7].  This 

Latin square is an n-by-n square containing n characters such that each character occurs exactly 

once in each column and row. For example, a 3x3 Latin square is shown in Figure 8. 

 

Figure 8. Example Latin Square 

Fisher [44] later adapted these Latin squares for use as a general experimental design 

approach. In experimental design for user studies, each row corresponds to user in the study, and 

the symbol in position (u,i)  in the Latin square represents the ith task presented to user r. 

Because no column has the same symbol twice, no user will see the same task at the same 

position. Therefore, each user will experience a different task ordering, therefore leading a 

reduced risk of bias based on the ordering of tasks across users. 

However, the use of a Latin square in experimental design has certain drawbacks. Namely, it 

is not possible to have a different number of users and tasks, and it is not possible to compare 

users who have some tasks in the same order, such as wanting to compare users who have the 

same training task but complete all other tasks are in different orders. Other work has developed 

a variety of means to remedy these drawbacks. For example, one may concatenate together 

multiple Latin squares to have an uneven number of rows and columns or one may create quasi-

A B C 

B C A 

C A B 
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Latin squares to which allow some rows or columns to have the same character more than once 

[16]. 

3.1.2. GOODNESS OF RECOMMENDATIONS 

Once one has appropriately designed the experiment, the next task is to determine how to 

measure the goodness of a given interactive predictive system. Past work has determined 

goodness in two general ways, by measuring the fit of a prediction model a set of training data 

set or by measuring how well generated predictions match a chosen test data set.  

3.1.2.1. FIT TO THE TRAINING DATA 

In the case of measuring the fit of a model to training data, this training data is a previously 

chosen set of data that is used to drive the formation of the prediction model. This is especially 

important in cases where there are many possible choices a recommender system must make to 

form a predictive model. With multiple choices, it is possible that the system or a user driving 

the system will make incorrect decisions, such as when determining how to break ties or which 

features to use as predictors. Incorrect decisions can lead to poor predictions, possibly because 

they are over-fitted to the training data, or, in other words, the model matches training data, but 

fails to match test data. 

These issues are partially addressed by having disjoint training and test data sets. By training 

on one data set and testing on another, it is possible to capture many instances of when a model 

would not be able to make predictions for previously unseen data points. However, such 

separation of train and test data also may be difficult. Properly choosing train and test data such 

that it matches reality but does not introduce unintended biases may be difficult. Moreover, the 

presence of multiple datasets for training and tests may require significant computation. To 

address these issues, a number of metrics have been specifically developed to measure how well 

a model matches with training data without the existence or knowledge of any test data. 
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Two such metrics, the Akaike Information Criterion (AIC) and the Bayesian Information 

Criterion (BIC), developed respectively by  Hirotugu Akaike [3] and Gideon Schwarz [98], have 

the goal of doing just that. Both of these metrics allow the computation of a single scalar result 

from multiple other values, such as the maximum likelihood of the model and the number of 

features used in the model. Neither of the information criteria metrics can be used to not 

determine the absolute goodness of a single model, but both can be used to compare the relative 

goodness of one model to another. If one model yields a lower criterion result than another 

model, the model with the lower value can be assumed to have better explanatory power for the 

training data [8].  These two criterion metrics only differ slightly in how they perform their 

computations, and to describe the intuition behind their computation. 

The AIC, which was developed first, only takes two factors into account, the maximum 

likelihood of the model and the number of free parameters or predictors in the model. Intuitively, 

the large the maximum likelihood of a model, the better a model matches training data. On the 

other hand, if there is a larger number of free parameters, the model is more complicated. A 

model may be too complicated to the point that it is over trained for the training data, meaning it 

is fit only for the training data set and not a more general data set, 

 Recall, that each of these information criteria seeks to have lower values for models that are 

better matches for a training data set.  Therefore, the AIC takes its two factors, maximum 

likelihood and free parameters, into account by subtracting maximum likelihood from free 

parameters. Furthermore, since maximum likelihood is on a scale of 0 to 1.0 and free parameters 

are in whole numbers, maximum likelihood is also reported using a logarithmic to give it a 

similar magnitude to free parameters.  The final equation is as follows, where L is the maximum 

likelihood and k is the number of free parameters: 
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𝐴𝐼𝐶 = 2𝑘 − 2 ∙ log 𝐿 

BIC, expands on AIC by taking into account the number of training data points in addition to 

the maximum likelihood. If there is a larger the number of training points, it is more likely that a 

model has been over trained to a training data set.  Therefore, this is an indicator of a more 

poorly matched model, and is thus combined with the number of free parameters k through 

multiplication. However, a larger number of training data points is not as strong of an indicator 

of a poorly matched model as a larger number of free parameters. For example having 100 more 

parameters may mean an over-complicated model.  On the other hand, 100 more training points 

may not lead to over training while 10,000 might. Therefore, to reduce the effect of a smaller 

number of training data points, the number data points is evaluated on a logarithmic scale. This 

yielded the following computation, where n as the number of data points in addition to the 

previously described variables: 

𝐵𝐼𝐶 = 𝑘 ∙ log 𝑛 − 2 log 𝐿 

Despite their differences, both metrics were designed to measure the goodness after a model 

has been formed. Other metrics have been designed with intention of being used during model 

formation.  

One such metric was designed for decision trees. Decision tree classification technique relies 

heavily on these in-process metrics for further developing a model. To make predictions, 

decisions trees make use of a tree-based model in which decisions are made by traveling down a 

path of branches on the tree. Each branch in a path is chosen based on the values of certain 

features, and the predicted decision is made based on the leaf on which the path completes [70].  

How these trees are formed and when they stop growing is decided based on a metric or 

metrics that measure how well the tree matches the training data. Commonly, this is done by 
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comparing the change in impurity of the model by adding some new branch or branches to the 

tree [51,92]. If a branch does not decrease impurity, that is have fewer test data points disagree 

with the end leaf decisions, that branch is not added. Furthermore, if no possible branch fulfills 

this requirement, the tree is considered stable and complete.  

Overall impurity of a decision tree model is computed by summing the impurity of all the 

regions in the tree, which are represented by the tree’s leaves. The impurities of these regions are 

often measured using two different metrics, entropy or Gini index [27,51]. Both of these metrics 

rely on the ability to compute the probability of an item in region R being assigned label l, or 

𝑝(𝑙|𝑅). To compute this probability, the metrics rely on access to each data items label (𝑦𝑡) and 

feature vector (𝑥𝑡).  The probability of a region having a particular label l is then computed as 

the percentage of points in that region with that label l. This percentage can be computed as the 

number of data points in R with the label l divided by the total number of data points in R. This 

yields the following equation: 

𝑝𝑅(𝑙) =
∑ 1{𝑡:𝑥𝑡∈𝑅 & 𝑦𝑡=𝑙}

∑ 1{𝑡:𝑥𝑡∈𝑅}
 

Using this probability, the entropy-based impurity for a region can be computed using the 

entropy measure from information theory. This measures entropy across all possible labels of a 

given region R as follows: 

𝐼𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑅) = −∑𝑝𝑅(𝑙) ∙ log 𝑝𝑅(𝑙)

𝑙

 

Impurity from the Gini index can be computed as the rate at which items would be incorrectly 

labeled. This is 1 – probability of assigning any of the possible labels to the region R, which then 

leads to the following equation: 
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𝐼𝑔𝑖𝑛𝑖(𝑅) = 1 −∑𝑝𝑅(𝑙)

𝑙∈𝐿

 

3.1.2.2. COMPARING PREDICTIONS TO TEST DATA  

After a model has been chosen that appropriately fits with the test data set, it is often the next 

task to see how well predictions from this model match with the test data points. Therefore, the 

next question is how to measure the goodness of the predictions when comparing them to the test 

data points. Some past work has reused the previously described metrics to measure how well a 

model fits with test data. For instance, Arguello et al. [8] used AIC and BIC to compare different 

approaches for predicting if a message would receive a response or if a poster of a message 

would contribute to an internet community again. 

There are also methods that do not overlap with those applied for matching a model to a 

training data set. As mentioned previously, one simple method of doing this is through accuracy, 

or the percentage of predictions that exactly match test data points. However, often times exact 

matching is not sufficient. To illustrate, consider a system predicting whether or not a user will 

respond to a message, and suppose that users respond to messages 90% of the time. In such a 

system, it would be easy to achieve a high accuracy of 90% by always predicting that a user will 

respond. However, this can be problematic if users expect responses to important messages, but 

do not receive them. This is a common problem, called the imbalanced dataset because the 

dataset has an imbalanced number of each category of labels [32].  

To addresses the class imbalance problem when performing binary classification, it is 

possible to measure goodness with true positives (TP), false positives (FP), true negatives (TN), 

and false negatives (FN) [51,99]. As indicated in Table 3, TP (TN) represents the number of data 

points correctly predicted as True (False), and FP (FN) represents the number incorrectly 

predicted as True (False). 
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With these metrics, it is possible to address the problem of an imbalanced dataset that was 

illustrated earlier. If a system takes the approach discussed earlier of always predicting that 

messages will receive responses because responses occur 99% of the time, this approach can be 

instantly judged bad based on a high FP value. 

However, these metrics require that recommender systems be analyzed using 4 possible 

values rather than the single value of simple accuracy. To address this issue, a variety of other 

metrics have been introduced which combine these values into a single value metric which can 

be used to judge or compare the goodness of recommender systems [51,99]. These include 

sensitivity (
𝑇𝑃

𝑇𝑃+𝐹𝑁
) – the percentage of positives correctly predicted, specificity(

𝑇𝑁

𝑇𝑁+𝐹𝑃
) – the 

percentage of negatives correctly predicted, precision (
𝑇𝑃

𝑇𝑃+𝐹𝑃
) – the percentage of positive 

predictions that are actually positive, and recall (
𝐹𝑃

𝐹𝑃+𝑇𝑁
) – the percentage of negative labels that 

were incorrectly predicted as positive. 

Two of these metrics precision and recall are particularly important to take note of, because 

they are overloaded terms. In the area of information retrieval, an area that commonly uses and 

evaluates recommender systems, precision and recall are also metrics but have vastly different 

meanings [72]. Information retrieval often requires the retrieving of lists of possibly relevant 

documents or other elements. In this context, recall measures the percentage of these lists that 

are non-empty and precision measures percentage of non-empty lists that contain relevant 

elements. 

Table 3. Computing of TP, TN, FP, and FN 

  Predicted Class 

  True False 

Actual 

Class 

True TP TN 

False FP FN 
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In addition to imbalanced datasets, there are other issues that arise from use of a simple 

measure of accuracy. In particular, there are many cases where recommendations or predictions 

can be close, but not exact. To illustrate, consider if a system is predicting user ratings which 

may cover a wide range of values (e.g. 1-5 Likert rating scale). In this case, it is often helpful to 

predictions that are close but not exact matches to the actual ratings (e.g. a prediction of a 3.5 

rating may be acceptable if the true rating is 4). To accommodate such situations, a variety of 

alternative accuracy metrics can be used. Two commonly used metrics are mean absolute error  

(MAE) and root mean square error (RMSE) [51,99]. Each of these approaches require the 

measure of error or distance between a prediction 𝑝𝑖 and a true value 𝑡𝑖, which we will represent 

using the function 𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑡𝑖).  Using this distance function, the overall errors are computed as 

follows: 

𝑀𝐴𝐸 = 
∑ |𝑑𝑖𝑠𝑡(𝑝𝑖 , 𝑡𝑖)|𝑖

∑ 1𝑖
 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑡𝑖))

2
𝑖

∑ 1𝑖
 

The next major issue is then how to measure distance. In the case of scalar values, like the 1-

5 Likert rating scale, this is commonly done by simply subtracting the predicted value from the 

true value. However, in other cases this is not possible. For example, if a system is 

recommending groups of users, it is not possible to just subtract a predicted group from an ideal 

one. To remedy this, past work has identified a host of other distance metrics for comparing two 

sequences or groups (A and B), such as Euclidean distance between two sequences [51], the  

Jaccardian coefficient (
|𝐴∩𝐵|

|𝐴∪𝐵|
) [51], or the Levenshtein distance which computes the number of 

edits (e.g. additions, deletions) necessary to make two sequences equal [65]. The Levenshtein 
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distance is particularly striking due to its similarity to the GOMS model [29] discussed 

previously in section 3.1.  Both metrics attempt to capture distance as a measure of how many 

actions a user must take, a feature which many recommender systems ultimately wish to reduce. 

The Levenshtein distance captures the editing actions users must make to correct sequences, such 

as insertions, deletions, and reversals. Comparatively, the GOMS model, which was developed 

later, goes beyond that tracking actions a more granular level, and is not restricted to the editing 

of sequences. It directly measures the way in which users interact with the system, such as by 

thinking, typing on the keyboard, clicking a mouse, and switching between the mouse and 

keyboard. 

Other work has also used distance to judge the goodness of different recommender systems, 

but, unlike other approaches, distance was not used to compute overall error. Instead, they have 

used distance measures to compute the correlation of predictions with other predictions or true 

values. For example, if a system is generating predictions for ratings of films on a 1-5 Likert 

scale, it may be helpful to see how such ratings would correlate with the actual ratings users have 

given those films. 

If the values being correlated are scalar or vector values (e.g. film ratings or a set of film 

ratings), correlation this can be achieved by using the widely accepted Pearson product-moment 

correlation coefficient. The Pearson correlation is defined as follows for two values A and B  

where  𝐴𝑖 or 𝐵𝑖 is the ith value of A or B and �̅� or �̅� is the mean value of A or B [89]: 

𝑟 =
∑ (𝐴𝑖 − �̅�)(𝐵𝑖 − �̅�)𝑖

√∑ (𝐴𝑖 − �̅�)2𝑖 ∑ (𝐵𝑖 − �̅�)2𝑖

 

This correlation varies across the range −1 ≤ 𝑟 ≤ 1. If the correlation approaches -1, 0, or 

1, it implies that predictions have a negative correlation, no correlation, or a positive correlation 

with the true values, respectively. 
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 However, there are many cases where predictions do not yield appropriate scalar or 

vector values. In some cases, the actual score assigned to recommended items is not important 

only that items are ranked appropriately. Take for example, the previously suggested case of 

predicting rankings. Perhaps candidate messages or posts are ranked by their predicted rankings 

(e.g. like those in Figure 7(b)), so that users may prioritize which messages they read first based 

on time constraints. In this case, the actual predicted score is not important. It is only important 

that elements are ordered the similarly whether ranked according to predicted scores or actual 

user preferences. 

In particular, the Spearman or Kendall rank correlation coefficients have been developed for 

such situations [99]. Each of these approaches measure the goodness of such ranking by 

correlating predicted with actual rankings. However, the Spearman rank correlation takes into 

account the actual true and predicted scores, shown in the following equation, where 𝑡𝑖 and 𝑝𝑖 

are the true and predicted values and 𝑡̅ and �̅� are the mean true and predicted values, 

respectively: 

𝜌 =
1

𝑛
(
∑ (𝑡𝑖 − 𝑟𝑎𝑡𝑖𝑛𝑔̅̅ ̅̅ ̅̅ ̅̅ ̅)(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )𝑖

𝜎(𝑟𝑎𝑡𝑖𝑛𝑔)𝜎(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)
) 

On the other hand, Kendall rank correlation does not look at the true and predicted scores. 

Instead, it looks at every possible pair of predicted items, and determines whether the pair was 

correctly or incorrectly ranked by the predicted score. The correlation is then given as: 

𝜏 =
(# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑝𝑎𝑖𝑟𝑠) − (# 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑝𝑎𝑖𝑟𝑠)

(# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑝𝑎𝑖𝑟𝑠) + (# 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑝𝑎𝑖𝑟𝑠)
 

These are just a few of many possible metrics which may be used to evaluate or compare 

how well predictive or recommender systems match a test data set. To describe them all in the 

appropriate detail would take volumes in itself. However, the limited coverage here allows 



 

89 

 

evaluation methods to be sufficiently addressed such that those necessary for the areas of this 

dissertation are discussed. 

3.1.3. SIGNIFICANCE OF RESULTS 

Even if an experiment or set of experiments is appropriately matched and uses appropriate 

metrics to test a predictive or recommender system, it is important to ensure the results are 

significant. As Shani & Gunawardana point out [99],  it is possible that some experimental data 

sets fortuitously confirm that some systems work well or do not work well. Therefore, past work 

has employed a variety of approaches to test the significance of results to ensure that the results 

of some past experiments are likely to apply to a wider population. As Shani & Guawardana also 

identified, this is often achieved by one of two possible means, confidence intervals and p-

values.  

3.1.3.1. CONFIDENCE INTERVALS 

These two methods differ in both their inputs and outputs. Confidence intervals calculations 

take in the distribution of some chosen metric (e.g. absolute error, accuracy, precision, recall, or 

RMSE) obtained from the experiment(s) and an intended confidence or probability level, and, in 

turn, they output a range in which that value is likely to fall in at the given confidence level for a 

general population. For example, suppose some researchers were attempting to predict how long 

it would take for users to respond to an email message. They may wish to predict with a 0.90 

confidence that their systems would generate predictions that have a specific error range. A 

confidence interval calculation may, in a good case, say this range of errors is 0 to 20 minutes.  

Typically, these ranges are determined by modeling the distribution of the desired metric as a 

Gaussian distribution. Assuming that the experiment(s) involved multiple independent 

observations, it is possible to approximate the mean and standard deviation of a more-general 

distribution as the mean and standard-deviation observed in the experiment(s). The output range 
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for the confidence interval can also be determined from this inferred more-general distribution. 

Furthermore, if the distribution observed in the experiments indicate that the distribution is likely 

not Gaussian, it is possible to determine this likely range from a non-Gaussian distribution. 

3.1.3.2. P-VALUES 

P-value analysis, on the other hand, takes as input the distribution of some chosen metric 

from an experiment (which we will call A); a value to compare it to, which may be a single value 

or a distribution of values (we will call this B); and an intended null hypothesis. The null 

hypothesis is the hypothesis opposite to the one that the experiment is intending to test. 

Generally, these null hypotheses fall into one of four categories: 

1. The means of A and B differ by some value k. 

2. The means of A and B are not equal. 

3. The mean of A is less than that of B. 

4. The mean of A is greater than that of B.  

The null hypothesis is often that A and B are equal, which is covered by the first category when k 

is zero. 

To illustrate the construction of a hypothesis and the corresponding null hypothesis, consider 

the goal of predicting lists of candidate email recipients, as described in section 2.5. To ensure a 

system predicts appropriate lists, it is important that the precision, or percentage of lists that 

contain at least one correct recipient, is greater than zero. This is a hypothesis, and its 

corresponding null hypothesis is that precision is less than or equal to zero. Since precision 

cannot be less than zero, this null hypothesis can be simplified to be precision is equal to zero.  

This null hypothesis falls into the category of checking if A and B are equal, where A is the 

distribution of precision values and B is the scalar value of zero.     
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From these inputs of A, B, and possibly k, a p-value is generated as output, which gives some 

indication if the null hypothesis is correct. Generally, if the p-value is below some threshold 

(typically 0.05 [99]), then the null hypothesis is rejected. The exact calculation of the p-value 

depends on whether B is a single value or distribution of values and which type of null 

hypothesis is being tested. 

If B is a single value (as in the case of our example with precision), it is common to calculate 

the p-value using Student’s t Test [61].   This calculation uses the mean, standard deviation, and 

sample size of A to calculate the test statistic t. The calculation is as follows, where �̅�, 𝜎𝑋, and 

𝑛𝑋 are  the mean, standard deviation, and number of samples in a distribution X: 

𝑡 =
�̅� − 𝐵
𝜎𝐴
√𝑛𝐴

 

In this equation, the numerator (�̅� − 𝐵) represents the error between the mean of A and the 

value of B, and the denominator (
𝜎𝐴

√𝑛𝐴
) is the adjusted standard deviation of A based on the 

number of samples taken for A. Once the test statistic has been calculated, the likelihood of 

observing the null hypothesis can be calculated using the probability distribution function of t-

values. This function requires a degrees of freedom value, df, which is defined as 𝑑𝑓 =  𝑛𝐴 − 1 

in this case. This probability is then used as the p-value, or the probability that the null 

hypothesis should be rejected.  

When B is a distribution with a variance equal to A’s such computations are often 

accomplished with a slightly different version of Student’s t-Test [61]. Assuming A and B are 

independent, this calculation requires the mean, standard deviation, and sample size of B, in 

addition to the corresponding information about A. Using this data, the test statistic in this 

situation is given by the following formula, where k is 0 when the null hypothesis is not in the 
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first category, and �̅�, 𝜎𝑋, and 𝑛𝑋 are  the mean, standard deviation, and number of samples in a 

distribution X: 

𝑡 =
(�̅� − �̅�) − 𝑘

√
𝜎𝐴
2

𝑛𝐴
+
𝜎𝐵
2

𝑛𝐵

 

Again, the numerator ((�̅� − �̅�) − 𝑘) measures the error between the means of A and the 

means of B with some adjustment based on k. Also, as before, the denominator (√
𝜎𝐴
2

𝑛𝐴
+

𝜎𝐵
2

𝑛𝐵
) is an 

adjusted standard deviation, but this case it takes into account the standard deviations of both A 

and B. 

Similar to the previous case, a degrees of freedom value is required to calculate the 

likelihood of seeing the calculated t-value from its probability distribution function. However, 

the calculation of this degrees of freedom value is different from in the previous case, since there 

are two distributions in this case rather than one. This new calculation is as follows: 

𝑑𝑓 =  𝑛𝐴 + 𝑛𝐵 − 2 

Since the development of this t-test approach, it has been expanded and adapted to apply to a 

wider variety of situations. For example, if B is a single value, the test statistic’s formula is 

changed to 

𝑡 =
�̅� − 𝐵

𝜎𝐴 √𝑛𝐴⁄
 

and the degrees of freedom for calculating p-values is computed as 𝑑𝑓 = 𝑛𝐴 − 1 [105]. 

 Moreover, the Welch’s t-test expanded on this approach to evaluate situations in which A 

and B are distributions with unequal variances [61]. In this expanded approach, the formula for 
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the test statistic remains the same. However, the formula for calculating degrees of freedom, 

which is necessary to determine the p-value, is significantly more complicated.  

In some other cases, A and B are non-independent distributions and can be paired. For 

example, two algorithms A and B may have been used to make rating predictions for the same 

set of objects.  These predicted ratings can be paired based on the object for which they were 

predicted, or, in other words, for predicted object p prediction 𝐴𝑝 from algorithm A can be paired 

with prediction 𝐵𝑝 from algorithm p. 

To compute p-values in these cases, there are two commonly used approaches. The first is 

called a paired Student t-test, which requires the calculation of a distribution of differences D, 

which is equal in size to A and B (|𝐷| = |𝐴| = |𝐵|).  Each value 𝑑𝑝 in D is defined as  𝑑𝑝 =

𝐴𝑝 − 𝐵𝑝, where 𝐴𝑝 and  𝐵𝑝 are paired values from distributions A and B, respectively.  Similar 

to the case when A is a distribution, and B is a scalar value, this D distribution can then be 

compared to a scalar value C.  This means it is also possible to calculate the test statistic using 

the above equation, substituting D and C for A and B [61]. 

𝑡 =
�̅� − 𝐶
𝜎𝐷
√𝑛𝐷

 

 

Again, this approach can be used to test four different null hypotheses for C and D. 

1. The means of D and C differ by some value k. 

2. The means of D and C are not equal. 

3. The mean of D is less than that of C . 

4. The mean of D is greater than that of C. 
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In many cases, C and k are set to 0, which then implies the following null hypotheses for 

distributions A and B in each of the respective cases: 

1. A and B are equal. 

2. A and B are not equal. 

3. B is greater than A. 

4. A is greater than B. 

The second approach for testing significance, called the sign test, is used to test against the 

null hypothesis that (1) B is greater than or equal to A or (2) A is greater than or equal to B [47].  

This test also uses the distribution of differences D, but then extracts two new distributions from 

D:  the distribution of positive differences (𝑃 = {𝑝: 𝑝 ∈ 𝐷 ∩ 𝑝 > 0}) and the distribution of 

negative differences (𝑁 = {𝑛: 𝑛 ∈ 𝐷 ∩ 𝑛 > 0}).  One of these extracted distributions is called 

the success distribution, because it contains all cases when the null hypotheses are incorrect.  

Thus, in the case of the first null hypothesis S=P, and in the case of the second null hypothesis 

S=N. 

The p-value is then calculated as the probability that a randomly generated �̂� is at least as big 

as S  when it is equally likely that a difference will be positive or negative in the generation of �̂�.  

Because it is computed using a well-defined and constant probability of having positive or 

negative differences, this likelihood can be computed using a standard Binomial distribution, 

which yields the following formula: 

𝑃(|�̂�| ≥ |𝑆|) = ∑ (
|𝑃| + |𝑁|

𝑠
) (0.5)𝑠(0.5)|𝑃|+|𝑁|−𝑠

|𝑃|+|𝑁|

𝑠=|𝑆|
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3.1.3.2.1. Criticism of p-values 

Despite the fact that the use of p-values have been accepted and used in a wide range of 

situations to analyze the significance of results [6,8,31,34,36,86,99], there have been many 

pieces of past work which criticize analyses using p-values [81]. Two main criticisms are that p-

values fail to capture the practical value of different values [67], and that p-values themselves 

may convey misleading information [48,81]. 

The first issue is that p-values tend to only capture whether two distributions are equal or 

different, not the magnitude of difference. In some cases, this magnitude is important. For 

example, assume one is testing two methods for predicting how long it will take until an email 

receives a response. A t-test may indicate with 99% confidence that method 1 has lower error 

than method 2. However, if method 1 has a mean error of 1 second and method 2 has mean error 

of 5 seconds, the magnitude of the difference is not large enough to be practical for most real-

world uses. This can often happen in cases of large data sets because larger datasets tend to lead 

to lower p-values in experiments. 

Lin et al. [67] provided two main recommendations of how to avoid such issues. First, they 

proposed the use of confidence intervals in addition to or instead of t-tests alone, since they 

convey the magnitude of differences between approaches. Second, they suggest that researchers 

incrementally subsample from a larger dataset, where each subsample is larger than the previous 

one. This way, researchers may report significance as it relates to sample size to help alleviate 

the likelihood that high significance comes from large sample size alone. 

Another large criticism about the misleading nature of p-values comes from the fact that p-

values only test the probability of a null hypothesis being true. It does not, as is sometimes 

assumed, test whether the desired, and often more specific, hypotheses are true. If there is a 
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mismatch between the null hypothesis and the desired hypothesis, as can often happen [81], the 

result can be misinterpreted. 

Moreover, other work has argued that even if a null hypothesis and desired hypothesis are 

correctly matched, the numerical values of p-values can be misleading. Goodman [48] observed  

that by introducing some Bayesian analysis, in some cases a p-value of 0.01 can indicate that 

there is a 13% likelihood that the null-hypothesis is correct, a fact which is not intuitive from the 

p-value. Goodman argued that to address this issue, Bayesian analysis should be included in the 

determining of statistical significance of results.  

As Shani & Gunawardana  discuss [99], p-values are also problematic if too many tests are 

conducted with p-values. For example, consider the approach for recommending email recipients 

developed by Roth et al., which was described in section 2.5.2. Recall that this approach requires 

the specification of a half-life value. Therefore, to determine whether such an approach will yield 

a precision higher than zero for a particular data set, one may test many different half-life values. 

For example, the half-lives 1 minute, 2 minutes, 3 minutes, etc. all the way up to 1 day  may be 

tested. However, this number of half-lives will yield over 86,000 different tests. With number of 

tests and even with a t-test threshold of 0.05, there is a 1 − 0.9586,000 ≈ 1.0 chance that some 

approach will incorrectly reject a null hypothesis by chance. In other words, if some approach is 

determined to have a precision greater than 0 according to t-tests, it is not clear whether this 

approach is a good approach or it received high precision by chance. 

Shani & Gunwardana discuss a method for addressing this issue of multiple tests, the 

Bonferroni correction. This correction adjusts the threshold for the p-value when the null 

hypothesis is rejected, such that it is less likely that an approach is ranked highest by chance. To 

make a correction so that the result has a 1 − 𝑝 confidence that the highest ranked approach is 
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truly the best one, the threshold for p-values must be 1 − (1 − 𝑝)1/𝑁, where N is the number of 

approaches being tested. 

On the other hand, Benjamin & Hochberg [24] argue that for many cases the Bonferroni 

correction is too conservative. They pointed out that, in many cases, the decision of whether to 

judge one approach better than another is made based on the rejection (or acceptance) of multiple 

null hypotheses which test multiple criteria. Even if some of these null hypotheses judgments are 

incorrect, it may be that researchers will reach the same relative value judgment about the 

approaches. This is not the case in the Bonferroni correction. If all null hypothesis rejections are 

not above a certain confidence to counteract issues with multiple tests, all rejections are treated 

as statistically significant. 

As an alternative, Benjamin & Hochberg introduce the False Discovery Rate (FDR), which 

reports how the percentage of null hypotheses that were likely to have been incorrectly rejected. 

The idea behind deriving and calculating this value is similar to that of false positive and false 

negative analysis. Assume that m different null hypotheses are tested. The results of accepting or 

rejecting these null hypotheses can be summarized in Table 4. 

 

In this table, only 𝑚, 𝑚0, and R are observable, while S, T, U, and V are unobservable. 

However, the true FDR is determined as V/R. To remedy this, Benjamin and Hochberg 

developed a method for rejecting null hypotheses that keeps the FDR at some chosen value 𝑞. 

Table 4. Summary of null hypothesis testing results 

 Declared  

non-significant 

Declared 

significant 

Total 

True null hypotheses U V 𝑚0 

Non-true null hypotheses T S 𝑚−𝑚0 
 

 𝑚− 𝐑 R  
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To perform this procedure, each null hypothesis ℎ𝑖 and its corresponding p-value 𝑝𝑖 are 

arranged in order such that 𝑝𝑖 ≤ 𝑝𝑖+1. Then all null hypothesis ℎ1, … , ℎ𝑘  are rejected for some k 

such that k is the largest i where  𝑝𝑖 ≤
𝑖

𝑚
𝑞.  

Despite these issues, p-values can still be helpful. When used appropriately and in 

conjunction with other methods of statistical analysis, they can provide evidence that methods 

are worth exploring further [81], which is often the end goal of research. 
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4. FOUNDATIONAL NAMED GROUP RECOMMENDATIONS 

As mentioned in related work in section 2.4.1, one important type of recommendation for the 

user selection problem is the recommendation of named groups. Named groups are persistent 

groups of user with whom to share, which are then given semantic labels. For example, a 

department, which is searching for new faculty candidates, may form a group named “Faculty 

Search Committee” whose members are in charge of identifying and communicating with 

possible candidates. Based on the previously mentioned idea that difficulty in any selection 

problem can be reduced by grouping options, it is likely that named groups will useful when 

addressing the user selection problem. However, in order for named groups to be useful, they 

must both exist and be up to date.  

Previous work has found that this is not the case for our target domains. As mentioned above, 

studies have found that users often do not create named groups in Facebook [15,103] or email 

[69,91]. Moreover, even though it has been observed that named groups change over time [91], 

past work has stated that determining how to keep multiple groups up to date is an open problem 

[6,69]. 

Therefore, we have identified two types of recommendations that may increase the 

usefulness of named groups: foundational and evolutionary named group recommendations. 

Foundational named group recommendations predict which named groups to create. 

Evolutionary named group recommendations predict how the memberships of existing named 

groups should evolve. With both of these recommendations, users will likely have fewer required 

actions to create and evolve groups. Because of the fewer required actions, users are more likely 



 

100 

 

to complete the tasks necessary to have useful named groups. It is our goal to address both types 

of named group recommendations. We will first address foundational group recommendations, 

and then evolutionary recommendations.  

As mentioned previously in sections 2.4.1.3 and 2.4.1.4, there is already a significant amount 

of past work that makes foundational recommendations for named groups in communities and 

email.  To better analyze this past work, we developed a design space of foundational named 

group recommenders of past work, which is a contribution in itself 

4.1. DESIGN SPACE OF NAMED GROUP RECOMMENDATION APPROACHES 

Approaches for foundational named group recommendations can be divided into two broad 

schemes, member suggestion [6, 10] and group creation [1, 3, 4, 7], which are illustrated in 

Figure 9. 

 

Member suggestion incrementally recommends elements such as users, newsgroups, or tags 

that should be added to a new named group, and uses the process shown in Figure 9(a). A user 

Recommender suggests new 

members of named group 

User selects appropriate 

member(s) 

Members added to 

named group 

Empty named group 
Publish named group 

(a) Member suggestion approach 

Recommender 

suggests new named 

groups 

User edits or rejects 

each suggested named 

groups 

No named groups Publish named groups 

(b) Group creation approach 

Figure 9. Approaches of past foundational named group recommendation schemes 
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initially has an empty, unpublished named group, for which a named group recommender 

suggests new members. The user selects the correct suggestion and then may accept this group or 

request more recommendations.  This possible request for more recommendations forms a cycle 

in the work flow, with each iteration of the cycle requiring user input. This process is then 

carried out for other named groups. 

Group creation, the second approach, is shown in Figure 9(b) and is the type of approach 

used in the various experiments described in section 4 on Foundational Named Groups. In this 

type of approach, the user starts with no named groups. The recommender suggests a set of new 

named groups by determining clusters within the user’s social graph, each of which the user can 

edit or reject. The edited named groups are then published. As opposed to the incremental 

member suggestion approach, which may require user input multiple times for recommendations 

for each named group, the “batch” group creation approach requires user input at only one point 

for all recommendations. 

In addition to member suggestion and group creation, past foundational named group 

recommendation schemes can be further categorized based on how they group elements. Again, 

two main approaches have been used. The first is property-based clustering. In a social network, 

individuals are often grouped based on shared values of certain attributes, such as age, sex, or 

location. The second technique is connection-based clustering, which groups individuals based 

on subsets of vertices in the social graph that are highly connected. Each of these approaches has 

its strengths and weaknesses. The property-based approach uses more information, and thus, is 

likely give predictions that are at least as precise as those of the connection-based approach. On 

the other hand, because it is dependent on the individuals’ properties, the property-based 

approach is restricted to systems and users where these properties are available and correct. 
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Some systems may grant limited access to these properties to users or recommendation tools due 

to privacy or security reasons, and many users may specify an incorrect or incomplete set of 

properties, thus limiting this technique to subset of social networks. 

These different techniques can be sorted into the design space, shown in Figure 10. As 

indicated, there has been work in all points involving member suggestion and group creation in 

this space.  

 

 

4.2. DRAWBACKS OF PAST WORK 

Despite the large variety of approaches of past work, it has three main drawbacks: 

1. Disjoint approaches across domains – Past approaches to foundational named group 

recommendations cover a wide variety of domains, such as email [69] and internet 

communities [6,15,45]. However, each of these approaches are particular to the specific 

domain for which it was developed, and therefore do not allow cross application or 

pollination of concepts amongst the domains. 

2. Limited to identifying groups of individual users – Past work has limited its automatic group 

identification to groups of individual users [6,15,69,91]. However, there are many cases 

Figure 10. Design space of foundational named groups recommendations 
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Creation 
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where multiple instances of other elements are used to address the user selection problem. 

For example, posts submitted in the Usenet communities system, such as the one shown in 

Figure 11, are often addressed to multiple newsgroups (shown as comp.lang.java.help, 

comp.programming, and comp.software-eng in the figure). Expanding foundational groups to 

include such elements may be helpful. For example, the newsgroups in this post could be 

recommended as a group that the user could then name as “Java algorithms”. Then similar 

future questions could be addressed to this “Java algorithms” group rather than remembering 

and entering three separate newsgroups. 

 
Figure 11. Example Usenet post 

While other methods have not specifically made such recommendations, they would not be 

dissimilar to hierarchical recommendations made by some past work in email and social 

networks [15,69].  Such predictions generate recommended named groups that are sorted into 

hierarchy where one group is a parent of another.  This hierarchy may be formed by with a 

top-down approach or bottom-up approach.  In the top-down approach, children of a parent 

group are formed and linked to their parent based on the individuals within that parent [15].  

In the bottom-up approach, existing groups are organized into a hierarchy such that the set of 

members in a parent group has a superset relationship with the sets of members in all its 

children [69]. 

3. Require user initiation of recommendations – Past work requires that a user knows when 

such recommendations would be helpful. More specifically, users must know when groups 

should be created. Based on observations in past work that users do not properly use named 

Date: May 1, 2013 16:38 

From: Phil 

To: comp.lang.java.help, comp.programming, comp.software-eng 
Subject: Java implementations for diff algorithms 

Are there Java implementations of diff algorithms for lists of 

objects? 
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groups [79], it is likely that users would not be able correctly determine when named groups 

would be helpful. This can become an issue because users may create groups too early such 

that they quickly become stale or too late such that they are not used after they are created. 

To illustrate, consider the example of a department searching for new faculty 

candidates. To assist with communication during the search, they decide to form a named 

group for the search committee. However, they may form the group too early, such as before 

the research area of the candidates has been determined. If creation occurs too early, the 

group may need to be recreated or changed significantly in the near future. Alternatively, 

they would not want to create the group too late, such as after all candidates have been 

interviewed or after a candidate has been hired. Creating the group too late may mean it is 

never used. By either creating a group too early or too late, there is additional effort to create 

a group that provides limited to no benefit. 

To address the drawbacks of past work, we have developed three approaches, which are 

covered in immediately following subsections: (1) cross-application of foundation group 

recommendation techniques in communities and email, (2) recommending groups of non-user 

elements, and (3) recommending the creation of groups as they are helpful to the user. 

4.3. CROSS-APPLICATION OF FOUNDATIONAL GROUP RECOMMENDATION 

TECHNIQUES 

One main issue with the cross-application of foundational group recommendation techniques 

is the imbalance in the number of approaches in email and communities. Communities contain 

many techniques for such recommendations [6,15,45,69,74,104]. However, there are far fewer 

approaches for automatic group identification in email [69,91], and, to our knowledge, only one 

of those approaches presents those identified groups to users as foundational named group 
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recommendations [91]. Comparatively, the other approach automatically identifies groups which 

are used to individually recommend additional recipients for future email messages. 

Therefore, it seems reasonable to assume that foundational group recommendations are more 

developed in communities than in email, and it is more reasonable to apply successful 

approaches from communities to email than vice versa. For this reason, we chose the apply 

community foundation group recommendations to email.  

To perform this cross-application from communities to email, it is important to first decide 

on an effective approach or approaches from the communities domain which can be applied to 

email. The chosen approach, must fulfill certain prerequisites. Namely, it must be not dependent 

on features present in communities but not email.  

Of the many approaches available in communities, all approaches rely on one of two things, 

users’ profile features (e.g. age, location, political preference) [6,74,104] and relationships 

between users [15,45]. Past work has found that links between users can be inferred from email 

[42,69,91]. However, this is not the case with users’ profile features. Because email systems do 

not have the shared profiles that occur in some communities systems such as Facebook or 

Renren, these profile features are not present or accessible in email. Therefore, foundational 

named group recommendation approaches that rely on users’ profile features would not be able 

to make useful recommendations in the domain of email.  For these reasons, we chose to select 

connection-based approaches for cross-application rather than feature-based ones.  

In order to make use of such connection-based approaches, it is necessary to have access to a 

social graph in which nodes are users and edges indicate relationships between users.  However, 

in email, users do not explicitly define any such relationships. Therefore, one of our major 

undertakings was to determine the best way to generate social graphs from email such that they 
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will produce optimal groups. To study and experiment how to generate such graphs, we worked 

with an undergraduate researcher named Andrew Ghobrial, who also submitted a portion of this 

work as his honors thesis. Together, we made use of the previously referenced past work that 

determined that users being addressed together in the same email message are indicators of 

implicit links between users [42,69,91].  

To illustrate, consider the example email message in Figure 12. The message shows three 

individuals, Chris, Albert, and Eddie, communicating with each other about a class presentation. 

Past work used such messages to infer that links exist between Chris & Albert, Chris & Eddie, 

and Albert & Eddie. If two users have shared such a link in the past, it is also likely that they also 

shared a relationship. 

 

Figure 12. Example message implying relationships between users 

To explore this concept and its application to foundational named recommendations, we 

developed and investigated three methods of graph generation. We call these groups (1) Simple 

Graph Generation, (2) Simple Time Threshold Graph Generation, and (3) Interaction Rank 

Threshold Graph Generation.  

4.3.1. SOCIAL GRAPH GENERATION APPROACHES 

4.3.1.1. SIMPLE GRAPH GENERATION 

The first approach, Simple Graph Generation, is called simple because we assume no 

adjustments need to be made after relationships are determined from co-occurrence in messages. 

This approach assumes that co-occurrences always imply relationships and such relationships 

never end. Therefore, a graph was created which a vertex for each sender and receiver of each 

chris@cs.univ.edu 

albert@cs.univ.edu, eddie@cs.univ.edu 

Our presentation for class 

From: 

To: 

Subject: 
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message. For example, consider the example message in Figure 12. This message would lead to 

the creation of the vertices albert@cs.univ.edu, chris@cs.univ.edu, and 

eddie@cs.univ.edu, and the creation of the following edges in the social graph: 

 (albert@cs.univ.edu <--> chris@cs.univ.edu) 

 (albert@cs.univ.edu <--> eddie@cs.univ.edu) 

 (chris@cs.univ.edu <--> eddie@cs.univ.edu) 

In terms of efficiency, if n users are collaborating through a single email message, the Simple 

Graph Generation approach will in the worst case create a new n-clique in the graph in the graph 

which will add at worst  
𝑛(𝑛−1)

2
 new edges. Therefore, this means that that the number of edges in 

the graph increases on the order of 𝑂(𝑛2) with each message.  

The potential downside of this approach is that it does not take into consideration the age of 

the message. If relationships are particularly old, it is not clear that such relationships still exist 

in perpetuity or should be used to generate groups. For example, in Figure 12 if Albert and Eddie 

have been out of school for a long time and the last time Albert and Eddie were included in a 

message together was 10 years ago, it is possible that either they no longer share any sort of 

relationship or that this relationship would not be helpful in determining groups. 

4.3.1.2. SIMPLE TIME THRESHOLD GRAPH GENERATION 

To remedy this issue of ignoring the age of messages, we adapted the Simple Graph 

Generation approach with the intention of ignoring past messages that imply relationships that no 

longer exist or are no longer relevant. To do this, we allowed the specification of a time 

threshold parameter. Then, any message that is older than the specified threshold time is ignored 

for graph generation.  
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This ignoring of messages is illustrated in Figure 13. In this figure, the blue (right) area 

represents messages that occurred within the time threshold, and the red (left) area represents 

those that did not. Only the messages in blue are used to generate a graph, and these messages 

generate a graph using the same method described for the Simple Graph Generation approach in 

section 4.3.1.1. 

 
Figure 13. Sorting of messages based on the time threshold parameter 

This approach goes beyond that of Simple Graph Generation by also taking time into 

account. However, as before, it does have certain drawbacks.  

The new time threshold parameter introduces new training requirements. Because this 

parameter must be set, there needs to be some method of determining the value of this parameter. 

If the time threshold is too low, it may ignore too many messages that would yield the generation 

of helpful groups. If the threshold is too low, it may include too many irrelevant relationships 

which will create spurious groups. 

This approach also has drawbacks in that it ignores certain features of relationships between 

users that may be inferred from messages. It ignores old messages instead of treating them as 

less important, does not take into account how often two users were included in the same 

message, and does not take into account which user sent a message. All of these factors could 

have a significant impact on whether two users should be connected in a social graph.  

For example, consider our users Albert, Chris, and Eddie from Figure 12, who only 

communicated via email while in school together 10 years ago. Because this occurred 10 years 

ago, it is likely that the relationship is no longer relevant. However, if they communicated 

extremely frequently in this time frame, it could be inferred their relationship was strong enough 
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to remain relevant 10 years in the future. Moreover, if Chris was the one to send all messages to 

Albert and Eddie, he would have actively created grouped together Albert and Eddie.  On the 

other hand, Albert and Eddie would have passively received been grouped together. Therefore, it 

is likely that Albert and Eddie have a stronger connection and therefore more likely have a 

relationship from Chris’s perspective than from Albert and Eddie’s perspective. 

However, the Simple Time Threshold Graph Generation approach would not take such 

situations into account. Instead, it would ignore all messages between these users because they 

were over the time threshold and not differentiate based on who sent a message. 

4.3.1.3. INTERACTION RANK THRESHOLD GRAPH GENERATION 

These issues can be addressed by an approach presented by researchers at Google to address 

a separate but related problem of ranking relationships between users for email recipient 

recommendations [91].  To perform these rankings, the researchers scored a particular group of 

users with an Interaction Rank score (IR) and groups of users were ranked according to their 

scores.  Since each of the edges in our social graphs can be treated as a group of two users, we 

could assign scores to individual edges using this IR score, and drop edges whose weights fall 

below some threshold.   Since this IR score has only been tested and targeted towards emails, if 

such an approach were to be successful, this would provide further evidence of the possibility to 

cross-pollinate concepts between the email and communities domains. 

 As a part of its calculation this IR score takes into account the half-life age of a message, 

which decreases in size exponentially with the age of a message, whether the person requesting a 

recommendation sent the message or not, and the frequency of messages in which a recipient 

was included. To include all these factors, IR is calculated using the following formula: 
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𝐼𝑅 = 𝑤𝑜𝑢𝑡 ∑ (
1

2
)

𝑡𝑛𝑜𝑤−𝑡(𝑚)
𝜆

𝑚∈𝑀𝑠𝑒𝑛𝑡

+ ∑ (
1

2
)

𝑡𝑛𝑜𝑤−𝑡(𝑚)
𝜆

𝑚∈𝑀𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

 

The various variables in this formula are as follows: 𝑀𝑠𝑒𝑛𝑡 and 𝑀𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 are the set of email 

messages sent and received by the user asking for recommendations, respectively. Time is 

represented by the variables  𝑡𝑛𝑜𝑤 and 𝑡(𝑚),  where 𝑡𝑛𝑜𝑤 is the current time and 𝑡(𝑚) is the time 

of message m. The equation (
1

2
)

𝑡𝑛𝑜𝑤−𝑡(𝑚)

𝜆
 is the standard half-life formula with a half-life of 𝜆. In 

this formula, the computed value is exponentially lower the older the message is.  

There are two parameters that also must be specified, 𝑤𝑜𝑢𝑡 and 𝜆. The value 𝑤𝑜𝑢𝑡 is how 

much more important sent messages are than received messages, and 𝜆 is the half-life constant 

that determines how quickly older messages lose their importance. 

Using this score, we could construct a graph using the method Simple Graph Generation 

approach described in section 4.3.1.1. Then we could assign a weight to the edge between each 

possible user pair 𝑢1 and 𝑢2, so that 𝑀𝑠𝑒𝑛𝑡 and 𝑀𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 only contained sent and received 

messages that included both 𝑢1 and 𝑢2 as senders or receivers. Then we dropped any edge that 

fell below some previously specified edge weight threshold.  

To illustrate how this works, consider edges formed from the perspective of a user Albert 

based on messages shared with collaborators Bob and Chris.  Furthermore, consider that a 𝜆 is 

set to one week and a 𝑤𝑜𝑢𝑡 to 1. If Albert sent a message right now to Bob and Chris, the half-

life score of the message would be 1 and the weight of the edge connecting Albert and Chris in 

the graph would be one. If Albert also sent a message to Bob and Chris one week ago, then the 

half-life of that message would be 0.5. The new weight of the edge between Bob and Chris 

would the previous weight (1) + the current half-life (1/2). Thus this edge's weight would be 1.5. 
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Then if the edge weight threshold were 1.0, this edge would be kept, but if the threshold were 

instead 2.0, the edge would be dropped. 

Like the Simple Time Threshold Graph Generation (Section 4.3.1.2), this approach requires 

the specification of parameters before graph generation, and thus requires analysis to determine 

the values of these parameters. In this case these parameters are 𝜆 (the half-life constant), 𝑤_𝑜𝑢𝑡 

(the sent importance), and the edge weight threshold. If any of these parameters are too low, they 

may lead to older, relevant messages losing importance too quickly, received messages taking 

too much precedence over sent messages, or too many irrelevant relationships being used to 

generate groups. On the other hand if any of these values are too high, older and irrelevant 

messages may not lose importance quickly enough, sent messages may take too much 

precedence over received message, and relevant relationships may not be taken into account in 

group creation. 

4.3.2. CHOOSING A PARTICULAR CONNECTION-BASED APPROACH 

There are many connection-based foundational named group recommendation approach that 

can extract groups from graphs generated by our above approaches.  Of these approaches, one in 

particular stood out because we had access to both the source code and the underlying reasoning 

behind its development, the Hybrid Clique Merger Algorithm  presented in Bacon & Dewan 

[15].  

To make its connection-based predictions, this algorithm finds initial groups as maximal 

cliques in the social graph.  Then, if two groups can be edited to match each other using 

additions and deletions below some thresholds, those groups are merged.  After all possible 

groups have been merged, the resulting groups are called networks, and any network larger than 

50 members is called a large network. A sub-graph of the original graph is the generated using 
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only vertices and edges of members of larger networks.  Groups are extracted from the sub-graph 

using the same method used in the graph, and the resulting groups are called subgroups.  The 

combined set of networks and subgroups is then an overlapping set of hierarchical groups, which 

is then presented as the recommended groups to the user. 

This approach is a particularly good one because it consistent with variety of past models of 

foundational approaches that generate seed named groups and merge them with candidate 

members based on structures in a social graph [15,45,69].  As long as new methods for email can 

generate a social graph from which to extract groups, it is likely many other approaches for 

foundational named groups could also apply to email. 

This approach was also chosen because it was jointly developed by a collaborator on this 

project, Prasun Dewan.  Therefore, we would have access to both the original source code and 

the any information or reasoning used in the development of the algorithm. Moreover, we have 

worked with two undergraduate students, Haoyang “Isabella” Huang and Ziyou “Will” Wu, in 

the development of Facebook user study on named group recommendation that uses the Hybrid 

Clique Merger Algorithm for generating recommendations. Thus, based on our experience with 

and access to knowledge about this particular algorithm, we determined that we would 

understand this algorithm well enough to address any errors or modifications in the email domain 

and therefore chose to apply the Facebook Hybrid Clique Merger algorithm to email.  

This algorithm does have certain requirements, namely recognizable identifiers of users and 

an unweighted social graph, in which nodes represent users and an edge between two nodes 

indicates that a relationship exists between those users. The first requirement, the names of users, 

is relatively easy to fulfill. Because email messages follow the Internet Message Format [88], 
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they contain email addresses of users. These addresses then can be used to recognizably identify 

users. 

Constructing a social graph is a more difficult problem in the domain of email. To compare, 

this is much simpler in the case of Facebook, for which the Hybrid Clique Merger algorithm was 

designed. In Facebook, users explicitly denote the social graph by explicitly denoting other users 

that are friends or denoting when friendships no longer exist.  

4.3.3. EVALUATION 

Having identified various methods of generating social graphs and a method for 

recommending groups from generated social graphs, our next step was to evaluate these 

approaches. To perform this evaluation, we had to perform four steps: (1) collect data, (3) set 

parameter values, (2) identify metrics, and (4) analyze recommendation results. 

4.3.3.1. DATA COLLECTION 

Since we had no existing system that generates foundational named group recommendations 

in email, we chose to conduct a study to collect email data.  This email data can then be used to 

perform offline evaluation of our recommendation approaches. 

In this study, each participant used a web application developed by myself to collect an 

anonymized email history of a user. Each participant signed a digital IRB form and logged into a 

web application. This web application allowed each user to then collect anonymous email data 

from each of their Outlook and Gmail email accounts. This data was in the format shown in 

Figure 14. 

In this format, each line represents a single email message. Each message has its own unique 

message ID, and is associated with a thread, which in turn has its own thread ID. In addition, we 

also collected anonymized IDs of the messages’ senders (FROM field in the message), recipients 

(TO, CC, and BCC fields), and the received-date of the message. These IDs, which were 
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represented as integer values, could be mapped to email addresses, such as those shown in Figure 

15. However, the mappings of IDs to addresses were only collected if the user specifically said 

we were allowed to do so, and, if collected, those mappings were stored in a separate, secure 

location.  

 
Figure 14. Format of anonymous email data 

 
Figure 15. Example IDs mapped to email address 

By default, we collected the 2000 most recent messages or the 400 most recent threads 

(whichever came first). Users could adjust the values after signing the IRB form but before 

signing into our web app to preserve their privacy. By allowing users to adjust both the number 

of messages and number of threads, we would allow users to adjust the data they submit to best 

preserve privacy.  Because some email clients, such as Mozilla Thunderbird, display email 

histories as a lists of messages, and other, such as Gmail, display these histories as lists of 

threads, users may better recall their own histories as messages or threads based on the client 

they use.  Therefore, they may more effectively be able to manage their privacy by thinking in 

terms of messages or threads. 

Ultimately, 28 users participated in our study, who were recruited largely via email and in 

person requests to UNC Computer Science undergraduate classes, UNC Computer Science Staff, 

and Durham public school teachers. Since some of these users shared multiple email accounts, 

we were able to use data from 31 separate email accounts for test our foundational named group 
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recommendations. Because users may communicate with separate people with separate accounts, 

we chose to treat each account as a separate user for the purposes of evaluation. 

4.3.3.2. CHOOSING PARAMETER VALUES 

As mentioned earlier, in order to effectively apply the graph creation approaches we 

previously described, we had to first determine appropriate parameter values. In the case of the 

Simple Threshold Graph approach, we needed to determine an effective time threshold. In the 

case of the Interaction Rank Threshold Graph, we needed to determine an effective weight for 

sent messages, half-life weight, and threshold for edge scores. These values were not reported in 

the paper that introduced this algorithm [91]. 

For the Simple Threshold Graph approach, we considered the thresholds of 1 hour, 1 day, 1 

week, 2 week, 1 month, and 2 months in pilot testing. We generated groups from our own e-mail 

accounts with these thresholds and checked their usefulness. We found that groups generated 

with a 1 hour, 1 day, or 1 week threshold either produced very few groups or only created 

spurious groups. This is reasonable because 1 hour or 1 day is intuitively not a long enough time 

period to be able to generate persistent groups that are useful in the long term. Based on these 

findings, we chose the thresholds of two weeks, one month, and two months to further test using 

the data collected from the user study. 

The Interaction Rank Threshold Graph approach required us to pick three parameters: a half-

life, a sent importance, and an edge weight threshold at which to drop edges. In order to find the 

best combination of these parameters, one could simply perform a brute force search across all 

possible combinations of all possible values of these parameters. However, given that there may 

be many possible values for each of these parameters, such a search is not practical. Moreover, 

we would need to perform a large number of tests in order to evaluate all possible parameter.  As 

mentioned in section 3.1.3.2.1 in the chapter on evaluation techniques, such a large number of 
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test cases are likely to lead one or a few choices in parameters that would yield positive results 

with our chosen metrics. These well performing approaches would likely be effective with 

respect to our chosen metrics based on chance rather than having found an effective set of 

parameters to recommend groups.  

Therefore, to set each of these three parameters, we performed tests using data from our own 

personal email accounts. In these tests, we only varied one chosen parameter and fixed the other 

two values. This allowed us to determine the effect of changing the chosen parameter on the 

edge weight distributions and therefore select an acceptable value. A parameter is not very useful 

if it has little effect on the distribution. In other words, if it yields edge weights such that a vast 

majority of weights are close to each other - edges with close weights would be included or 

excluded together. 

We evaluated this effect of different parameter values using a cumulative distribution 

function (CDF) plot of edge weights. In this plot, possible edge weights are along the X axis and 

the percentage of edges having a weight less than or equal a given weight are along the Y axis. 

We then displayed multiple, different colored plots on a single graph, where each plot 

corresponds to the CDF of edge weights for a chosen parameter value. If the CDF for a specific 

parameter value is more towards the upper left-hand corner or the lower right-hand corner of the 

plot, then there is little variation in edge weights, meaning it is likely not possible to determine a 

good edge-dropping threshold. If it is in the upper left-hand (lower-right hand) corner, most of 

the edges have a small (large) weight; and the edge weight threshold parameter would not be 

very good at discriminating among the edges, regardless of its value. 

To test half-life constants, we considered half-lives of 1-hour, 1-day, 1-week, 2-weeks, and 

1-month. The CDF plot of the edge scores using these half-lives and a sent constant of 1 are 
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shown in Figure 16. As the figure illustrates, both 1-hour and 1-day half-life constants have CDF 

that are close to the upper left-hand corner of the graph. As mentioned previously, this indicates 

that there is little variation in edge weight and therefore it may not be possible to specify an 

effective threshold. Comparatively, the 1-week, 2-weeks, and 1-month half-life constants were 

more towards the center of the graph, indicating a greater variation on edge weights and a better 

possibility of choosing an effective threshold. Therefore, we chose the second, more successful, 

set of values in our group evaluation described later. 

 
 

To analyze the sent constants, we performed a similar analysis using a fixed half-life of one 

week and sent constants of 1/16, 1/8, 1/4, 1/2, 1, 2, 4, 8 and 16. A sent constant of 2 means that 

sent messages edges are given twice the weight of received messages. Intuitively, a message that 

is sent should be given more consideration when generating groups than a message that was 

received as it defines a group from the point of the sender – the user for who the groups are being 

predicted - rather than the receiver. 

 

Figure 16. CDF for same sent-constant, various half-lives 
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As demonstrated by the CDF plot in Figure 17, there was very little variation in the edge 

weights across any of the sent constants. This indicates that changing the sent constant has little 

effect on the edge weights in the graphs we constructed. Based on this limited effect, we then 

decided to use 1 as the value of this parameter, which means sent messages are equally important 

as received messages in predicting groups. 

Finally, we needed to answer the question, "at what point do we drop edges?” To do so, we 

fixed the sent constant as 1 and the half-life constant as 1-month, which was one of our 

successful approaches. The CDF of the edge weights of these constants is shown as the dark blue 

plot in Figure 16, which is the rightmost distribution in Figure 16. 

As the figure shows, there are a few elbows in the graph, or points at which there is a stark 

change in the derivative. In particular, the first of these elbows occurs at approximately 0.25. 

Before this point, the value and derivative is close to 0, indicating there are some, but relatively 

few, edges below this threshold. Because the number of edges with thresholds higher than 0.25 

increases after this point, it is likely that the edge weights below this points are heavily 

influenced by noise rather than any meaningful signal. Moreover, since the edge weights are 

 

Figure 17. CDF for same half-life, various sent-constants 
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likely noise, the edges themselves are likely noise. Since the goal of the threshold is drop 

superfluous edges, we chose 0.25 as our edge weight threshold to drop these likely noisy edges. 

4.3.3.3. EVALUATION METHODS  

Our next task was to define how to compare the three schemes. Previous research has used 

two approaches for evaluating how much effort automatic group prediction saves over manual 

group composition: (a) evaluation of the effort saved based on task completion time and user 

interviews [69], and (b) evaluation of the effort saved by asking subjects to morph predicted lists 

into ideal lists and measuring the number of edits required in this task  and user interviews [15]. 

As mentioned earlier, both evaluations were heavyweight in that they involved significant effort, 

which several of the recruited subjects were not willing to put in. 

We essentially had data about ideal groups through the users grouped in email messages. It is 

possible to compute the effectiveness of foundational named group recommendations by 

measuring the cost of using recommended groups in messages sent or received after the 

recommendation. Thus, this requires a training set of messages to generate group 

recommendations and a test data set to measure the effectiveness of those recommendations. 

However, such computations have two drawbacks: they require the division of test and train data 

such that chronological ordering of messages is not preserved, and they require a model for how 

users to use such recommended groups. 

4.3.3.3.1. Dividing into training and test data sets 

We needed to divide the data such that chronological ordering is preserved, because the 

training messages must occur chronologically before the testing messages. In a realistic scenario, 

users would use our recommendation schemes to generate groups based on past messages for use 

in future messages. If our results are to match reality, our predictions must mirror such a 
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scenario. For this reason, we could not perform k-fold cross validation. With multiple passes, in 

some passes, some tests messages would occur chronologically before training message. Even if 

such tests resulted in effective group prediction for the test messages, it is not clear that they 

would match reality.  However, given that we had 31 email accounts to test separately, we could 

still have 31 independent tests to verify the significance of our results. 

Therefore, for each user, we sorted each account’s list of messages in chronological order. 

Each accounts’ messages were split into a training and test set. The training set contained the 

first 80% of messages and the testing set contains the remaining 20% of messages. We then 

predicted groups using the training set, and we then evaluated the usefulness of the predicted 

groups when applied to the testing set. 

4.3.3.3.2. Method for addressing groups in messages 

In order to appropriate model how users would use a recommended named group, we needed 

to assume an interface or interfaces for how users would use groups to address future messages. 

For this task, we considered two possible methods of addressing groups, listservs and member 

replacement. 

In listservs, a group of users are hidden behind some email alias, such as 

collaborative_systems@listserv.univ.edu. A user can then use this named group in future 

messages by including the address as a recipient of future messages. The message is then 

directed to some listserv server, which forwards the message along to all group members behind 

the alias.  This approach is beneficial in that it does not require any additional functionality in 

email clients.  Users can use existing functionality to address groups via email addresses.   

However, listservs have a drawback that users are only able to see the name of the group (e.g. 

collaborative_systems@listserv.univ.edu) and not the members of the group.  This means 
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users would need to recall the members of the group from memory or use an additional UI to 

validate the group’s members.  Moreover, users would not be able to easily make any changes to 

the group as a message is being addressed.  For example, if users only wanted to leave one 

member of a group out of a message, they would have to either need to address all those 

recipients manually, create a separate group, or use a separate UI to edit the group before sending 

the message.  If the users chose the third option of editing the group, it is possible they would 

forget to re-add the member to the list before sending future messages to the group.  

The member replacement interface is a state of the art UI currently employed by Gmail and is 

illustrated in Figure 18. As shown in Figure 18(a), users type or select the name of a named 

group that they had created previously into the standard email recipient field. Following the 

specification of the group, the name of the group is replaced with all the members of the group, 

which is shown in Figure 18(b).  As a result, the group is now editable in that users may remove 

members they wish not to include or add members that are missing from the group. This 

approach addresses the drawbacks of listservs by not requiring users to remember the members 

of the group or access them through a separate UI.  Furthermore, users may make adjustments to 

the recipients of a message without changing a group’s member, which allows for more flexible 

communication.  

 
Figure 18. Use of named groups in Gmail 

 

However, member replacement has its own drawbacks.  It requires additional functionality in 

email clients to replace names of groups with the respective group’s members.  Moreover, it does 

(a) Initial typing of the name of the group (b) Replacement of name with group members 
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not indicate to the recipients of messages that they are grouped together or allow other users to 

reuse the same group.  In the case of listservs, recipients are aware that they are members of 

some group based on messages addressed to them. Because a message is addressed to a listserv 

email address instead of recipients’ personal addresses, recipients can infer that they are 

members of a group.  Moreover, because that group is referenced as a standard format email 

message, recipients may use that address to send future messages to the same group.  Because 

member replacement does not share any information about the existence of a group with a 

message’s recipient, let alone how to address that group, recipients cannot reuse the group in 

their own messages without recreating it on their own. 

Recall that our goal was to reduce user effort in addressing future email messages by 

recommending the creation of named group.  Fundamentally, generating and presenting new 

group recommendations requires the addition of new functionality.  Therefore, the requirement 

to include additional functionality in email clients is not a significant drawback.   Our goal is also 

about assisting address messages, rather than sharing of named groups with other users.  

Therefore, it is not a significant drawback if groups cannot be shared.  Finally, if groups can be 

edited as they are used in messages, it implies that named groups can be imperfect matches for 

future messages. This allows users to spend less effort handling recommendations, because they 

may use the majority of their effort to address later messages, which matches the case when 

users do not have any named groups. For this reason, we assumed member replacement for the 

use of named groups. 

This UI has two stages in which users choose and validate groups.  In the first stage, users 

choose a group by name, and, in the second, users edit which members of that group they will 

use as they address some message. A perfect match of a named group to the recipients of a 
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message would be helpful, but it is not necessary with such a UI.  This UI allows more flexible 

email communication using groups  

 If our foundational group recommendations are used in this way, it can be assumed that 

users may edit a named groups members for each message, possibly adding or removing 

members of a group each time a message is addressed. 

4.3.3.3.3. Method for handling recommendations 

Given that groups could be edited as they are addressed in messages, we assumed that users 

would reject, or users would accept and name recommended groups.  We chose not to model the 

cost of users editing groups before messages are addressed, because it would require determining 

the exact group into which a recommendation should be transformed.  Our email data set did not 

have any information about what the ideal transformation of any given recommendation should 

be.  Moreover, if we chose how to transform a recommended group based on the collaborators in 

some future message, it is not clear how to map a group to a future message.  Therefore, it would 

be likely we would incorrectly model how users would transform such recommendations. 

4.3.3.3.4. Metrics of user effort 

Using this model of limited interaction with groups before messages are addressed and 

member replacement as groups are addressed in messages, our next goal was to identify metrics 

of user effort in these cases.  To generate these metrics, we measured effort as the actions users 

may take when interacting with computers.  The method for modeling user effort is consistent 

with  Bacon & Dewan’s [15] approach, which model users’ effort when editing members of 

recommended groups the number of additions and deletions users must perform, and with other 

metrics or models that measure distance or effort based on user actions, such as Levenshtein’s 

distance [65] or the GOMS model [29]. 
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When addressing new foundational named group recommendations, users must scan each 

recommended group and reject or name each recommended group.  Therefore, we measure the 

effort in this step as the number of recommended groups that must be scanned and the portion of 

those groups that must be named.  The portion of groups that were rejected could then be 

calculated as 1 – (portion of groups that were named). 

To determine whether a group would be named or rejected, we assumed users would name a 

group rather than reject it if it were useful in at least one future message.  To do this for each 

group, g, we started by computing the distance of each message to the group. Distance was 

measured in two dimensions, the percentage of the message collaborators that are missing from g 

(we call this relative additions because they must be added before the message is sent) and the 

percentage of the g’s members that are not in the message’s collaborators (we call this relative 

deletions because they must be deleted before the message is sent). 

The list of matched messages for group g was then the list of messages that did not require 

more than 1.0 relative additions or deletions. We ignored these messages, because, in these 

cases, the user would need to either remove all members of the recommended group or add all 

recipients listed in the message. In other words, all recommended members of the recommended 

group are wrong.  This indicates that a user would be better served by not using the particular 

recommended group in the message. We therefore assumed in our model that users would reject 

these group recommendations and instead exert less effort to manually enter the recipients of the 

message. If a recommended group had at least one matched message, we then assumed the user 

would name rather than reject that group.  On the other hand, if there are no matched messages, 

that group was assumed to be rejected. 
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In the case of addressing some future message, users exert effort by adding recipient names, 

which may be individuals or names of groups, and removing members of groups. Therefore, it is 

reasonable to measure effort in terms of additions and deletions users perform.  However, 

reporting absolute numbers of additions and deletions may not be helpful.  For example, consider 

a group that contains 100 members, of which a user must remove 2 recipients to address in a 

future message. This is a considerably better match than if a user has to remove 2 recipients from 

a group of 3 members.  Similarly, if a user only needs to manually address 2 recipients in 

addition to using group when sending a message to 100 total recipients, it is a much higher 

reduction in effort than if a user had to manually address 2 recipients in addition to using a group 

when sending a message to 3 recipients. 

As these examples indicate, the number of additions and deletions relative to the size of the 

group or ideal collaborators is more important than the absolute number of additions and 

deletions, because it gives a better idea of whether effort is meaningfully reduced.  Therefore, we 

reported effort in this case the previously described relative additions and relative deletions for 

using the best matched group with a given message. 

These metrics also capture the importance of the classical metrics precision (the number of 

recommendations that are correct) and recall (the number of times that recommendations are 

generated). If there is low precision, many of the recommended named groups will be incorrect 

and therefore the user will name a fewer percentage of groups and need to perform many 

additions and deletions to correct the recommendations. Moreover, if there is low recall, there 

will be many failed recommendations, and thus there will be many named groups which required 

1.0 relative additions and deletions. Therefore, if users tend to accept and name a higher 

percentage of predictions and are required to perform a low number of required relative additions 
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and deletions, we assume the precision and recall will be sufficiently high such that the user does 

not become frustrated to the point to stop using the recommender system.  On the other hand, if 

these values are bad, we assume users will become frustrated to the point that they either stop 

reviewing recommended groups, because they are largely incorrect, or will stop using groups to 

address messages, because they require too much effort to use. 

To identify the best matched group g for a message m, we performed a similar process to the 

one described previously.  Each message m was matched to list of candidate groups, where each 

group in this list required less than 1.0 relative additions and deletions.  If this list of groups was 

not empty, this list was ranked, first by relative additions and then by relative deletions. We 

chose to prioritize additions because they require the most effort on the part of the users. For 

additions, users must scan the group’s members, recognize someone is missing, recall the person 

to add, and manually enter that person’s name or email address to add them. In comparison, 

deletions only require that users scan the group’s members, recognize someone should be 

removed, and typically click a single button.  The top ranked group in this list was used as the 

match for that message.  The cost of addressing that message was then measured as the relative 

additions and deletion distance between that message and that top ranked group.  If no such 

group existed, we assumed a cost of 1.0 relative additions and 0.0 relative deletions.  These mean 

and standard deviation relative addition and deletion values were then reported across all test 

messages. 

  However, this approach does not measure when any groups can be used in future work 

without user editing. It would be beneficial to know if users can use some recommended groups 

without editing them.  If recommended groups require no additional editing, they would severely 

reduce user effort. However, if even some of the groups require some effort in the form of 
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additions or deletions, it will skew the mean such that it is impossible to tell if any 

recommendation perfectly matches some future message. Therefore, to address this issue we also 

report the percentage of groups that perfectly match some future groups, or, in other words, 

require zero relative additions and deletions. We call this value perfect match rate. The closer 

this rate is to one, the better the recommendations are, because it indicates that users will have to 

edit fewer recommended groups. 

4.3.3.3.5. Determining Significance 

Our final task to complete before we moved onto measuring the results of prediction was to 

determine a method for measuring statistical significance. To do so, we developed multiple 

hypotheses, one for each metric, to verify the significance of our results. 

In the case of number of groups recommended and the percentage of groups that were 

named, at least one group must be recommended and at least one group must be named rather 

than rejected in order for our recommendations to be successful. Moreover, our 

recommendations would be better if at least some of them are perfect matches to some future 

message.  Therefore, we needed to test against the null hypotheses that 0 groups would be 

recommended, 0 groups would be named rather than rejected, and 0 messages would perfectly 

match to a named group. 

On the other hand, lower relative additions and deletions values indicate better 

recommendations.  If either of these values is greater than or equal to 1, it implies it would be the 

same or more effort to not use groups.  Therefore, we tested these values against the null 

hypotheses that these values would be less than 1. 

The rejection of all of these null hypotheses could be tested using a Student t-Test.   Our goal 

was to show the rejection of these null hypotheses with a standard significance of p < 0.05. 
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However, we were also testing multiple recommendation approaches. Namely, we had three 

different methods for generating social graphs, and two of those approaches branched off into 

even more approaches because they took various parameters. This total set of parameters is 

shown in Table 5, which yields a total of seven tested approaches. To ensure we did not fall 

victim to false positive results from over testing, we used Benjamin & Hochberg’s [24] FDR 

method for removing erroneously significant results, which was previously discussed in section 

3.1.3.2.1 in the chapter on evaluation. This method was chosen over Bonferroni correction, 

because the Bonferroni method can be overly conservative, as discussed in the same section. To 

remain consistent with our p-value selection, this target FDR rate was 0.05.  

 

4.3.3.4. RESULTS AND ANALYSIS 

The relative additions and deletions results of using the various approaches of foundational 

named group recommendation in email are shown in Table 6. Moreover, statistical tests were 

performed against the null hypotheses that each approach was judged a poor approach with 

respect to each tested metric. These results of these tests are denoted in the tables with different 

symbols. A * indicates that a t-test yielded a p-value less than 0.05 for that metric. A † indicates 

that the null hypothesis was rejected while having at most an FDR rate of 0.05.  Only when a test 

both had a p-value less than 0.05 and the null hypothesis was rejected based on a FDR rate of 

0.05, did we then assume that the results were significantly better than a manual approach. 

Table 5. Graph Generation Approaches and their Constants 

Graph Generation 

Approach 

Time 

Threshold 
Half-life 

Sent 

Constant 
 

Simple Graph - - -  

Simple Threshold 2 Weeks - -  

Simple Threshold 1 Month - -  

Interaction Rank - 1 Week 1.0  

Interaction Rank - 2 Weeks 1.0  

Interaction Rank - 1 Month 1.0  

Interaction Rank - 2 Months 1.0  
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As Table 6, indicates, all approaches of graph generation generated significantly more than 0 

recommended groups, had significantly more than 0 groups named rather than rejected, and were 

significantly better than manual. Moreover, the approach with the lowest mean relative additions 

is bold and in green (the Time Threshold approach with a threshold of 1 month). We ranked by 

this value, because, as mentioned earlier, additions are higher effort for users. This best approach 

shows an over 90% reduction in effort over manual with respect to additions. Moreover, it 

showed an approximate 78% reduction in effort over manual with respect to relative deletions. 

These results lead us to conclude that, in general. cross-application of foundational named group 

recommendation techniques from Facebook to email can be better than manual in terms of 

additions and deletions. Moreover, we concluded that in these results, Time Threshold Graph 

Table 6. Results of foundational named groups cross-application from Facebook to email 

Method Parameters  

Groups 

to scan 

Portion of 

groups named 

Relative 

deletions 

Relative 

additions 

Perfectly 

matched 

messages 

mean stdev mean stdev mean stdev mean stdev mean stdev 

Simple - 9.6*
†
 7.7 0.30*† 0.23 0.255*

†
 0.103 0.101*

†
 0.111 0.002 0.006 

Time 

Threshold 

threshold = 

1.0 week 
7.3*

†
 7.3 0.27*† 0.23 0.261*

†
 0.102 0.095*

†
 0.110 0.002 0.006 

threshold = 

2.0 weeks 
10.1*

†
 7.6 0.26*† 0.23 0.261*

†
 0.102 0.095*

†
 0.110 0.002 0.006 

threshold = 

1.0 month 
8.6*

†
 7.4 0.34*† 0.24 0.221*† 0.111 0.094*† 0.098 0.003* 0.006 

threshold = 

2.0 months 
11.3*

†
 7.4 0.32*† 0.24 0.252*

†
 0.101 0.110*

†
 0.112 0.003* 0.006 

Interaction 

Rank 

λ=1.0 weeks, 

wout=1.0 
7.9*

†
 7.4 0.33*† 0.24 0.238*

†
 0.114 0.096*

†
 0.109 0.003* 0.006 

λ=2.0 weeks, 

wout=1.0 
4.6*

†
 5.5 0.47*† 0.35 0.199*

†
 0.126 0.135*

†
 0.178 0.004* 0.007 

λ=1.0 month, 

wout=1.0 
8.9*

†
 7.5 0.31*† 0.25 0.247*

†
 0.11 0.110*

†
 0.12 0.003* 0.01 

λ=2.0 months, 

wout=1.0 
6.3*

†
 7.1 0.45*† 0.33 0.196*

†
 0.119 0.105*

†
 0.137 0.004* 0.01 

* indicates that p < 0.05, †indicates that the null hypothesis is rejected according to FDR test 
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Generation with a threshold of 1 month provides the best foundational named groups 

recommendations in the dataset we tested in terms of relative additions and deletions. However, 

if standard deviations are treated as error bounds, all the bounds for the approaches’ results 

overlap for a given metric.  Therefore, given these overlapping standard deviation bounds, we 

could not generalize the same approach as the best in a more general population.   

However, Table 6 also indicates some somewhat negative results about these approaches.  

Almost no messages were perfectly matched to some group. In fact, the various rates of perfect 

matches are so low, that, despite the fact that some tests had p-values less than 0.05, the FDR 

adjustments did not allow for a rejection of the null hypothesis in any of these cases.  This means 

that we cannot say with any significance that at least one message or recommended group 

perfectly matched with some recommended group or message, respectively.   

In comparison, when the Hybrid Clique Merger approach was originally developed and 

applied to Facebook, there were multiple cases where predicted groups perfectly matched what 

users identified as ideal groups that they were trying to create [15].  This is likely due to the fact 

that these ideal groups that users identified in Facebook were not required to be used for 

addressing future messages or the specification of future privacy settings.  It is possible that if 

the recommended groups in Facebook were compared against future messages or privacy 

settings in Facebook, there would be no perfect matches.  Moreover, the ideal groups that users 

identified may cover a variety of purposes other than addressing future messages or specification 

of privacy settings.  For example, users may wish to use such groups to understand the 

organization of their social graphs.  The perfect matches found in past work may correspond to 

these groups that are not used in the cases that we modeled. 
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The portion of groups which were named rather than rejected are somewhat negative in that 

the mean values indicate that a majority groups could not be matched to a corresponding future 

message.  This may indicate if the only intended purpose of recommended groups is to address 

future messages, users may reject a majority of recommended groups.  Such rejection of groups 

may cause users to feel frustrated with the recommendations which may further cause them not 

to use such recommendations in the future.  However, past work has found that this is not the 

only reason people create groups. 

Past work has observed that users may wish to file messages based on which group the 

collaborators fall into or understand the social structure of their contacts [15].  In either case 

different criteria for what percentage of groups are “matching” may be required.  For example, to 

file messages, users may only wish to determine whether the set of collaborators in a message 

has a subset or intersection relationship with the set of members in a group.  To illustrate, if users 

may sort email messages about their communications with their research labs in their 

departments into a folder titled “lab communication”.  To automatically perform such a task, 

they may have a named group “Lab Researchers” and only sort messages into the folder if all of 

the collaborators in that message are members of the “Lab Researchers” group or, in the case 

when they also want to include messages involving external colleagues, if some members of the 

group “Lab Researchers” are included as collaborators in the message.  To accommodate such 

cases, new methods for matching groups must be developed, which we leave open for future 

work. 

Despite these negative results, the other results in terms of relative additions, relative 

deletions, and non-perfect matches greater than one indicate that these approaches are better than 

manual. Therefore, our findings provide support for the following sub-thesis:  
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However, there are some limitations of these findings that may be addressed by future work.  

Neither the group-center model nor the message-centered model of user actions takes into 

account the use of two groups in a single message. For example, users may address a message to 

both “Extended Family” and “Spouse’s Extended Family” rather than create a combined group. 

This may actually reduce the values of the message-centered metrics, but it would also require 

the capturing and comparing of effort necessary to remember and specify multiple groups.  

Our metrics are also very narrow in nature. The ability to efficiently address recipients is 

only one application of named groups. For example, as mentioned previously, users may wish to 

automatically file messages related to a group or understand the social structure of their contacts 

[15]. Our metrics do not evaluate these other possible benefits. 

We also did not evaluate whether email messages originally contained the correct recipients. 

Past work has observed that at least 9.27% of email users have incorrectly addressed messages 

[31]. This indicates that some of our participants may have incorrectly addressed messages. If 

our study participants had incorrectly addressed messages in the training set, we may have 

incorrectly predicted groups. If some messages in our test sets were incorrectly addressed, we 

may have incorrectly measured the effectiveness of our groups. Future work can look into 

techniques to remove or correct messages with incorrect recipients. 

Sub-Thesis I: Cross Application of Foundational Named Group Recommendations 

It is possible to cross-apply foundational named group recommendation approaches from 

Facebook to recommend named groups of email addresses in email such that some 

recommendations will be accepted and the use of the accepted recommended groups in 

future messages will require less effort than if no such recommendations had been 

generated. 
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Our user study was also largely limited to university students, university personnel, and 

public school teachers. It is not clear that these results would apply outside these populations. 

Social relationships may be organized differently in different settings, such as a corporate 

environment. If the social organization is different enough, our prediction approach may not 

predict useful groups. Future work may look into the application of our group prediction 

techniques in a wider population. 

 

4.4. RECOMMENDING GROUPS OF NON-USER ELEMENTS 

Despite these limitations, our work in email indicates that this approach is helpful in 

predicting groups of users for use in addressing messages. This implies another question: would 

such group recommendations be helpful in other systems in other domains that also require users 

to address messages? To address this question, we considered two other such systems in the 

communities domain, Usenet and Stack Overflow.  

In Usenet, messages are posts that must be addressed to one or more Newsgroups. Users then 

receive messages based on the Newsgroups to which they subscribe. An example of these 

messages is shown in Figure 11, which is a message addressed to the newsgroups 

“comp.lang.java.help”, “comp.programming”, and “comp.software-eng”. 

In the case of Stack Overflow, messages are questions, which must be marked with one or 

more tags. Users than receive messages by identifying favorite tags or searching for questions 

associate with a particular tag. Such a question is shown in Figure 19 with the tags “java” and 

“algorithms”. 
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Figure 19. Example message in Stack Overflow 

Because both of these systems allow messages to be addressed or marked with newsgroups 

or tags, it is likely that Usenet or Stack Overflow would benefit from named groups of 

newsgroups or tags, respectively. Such named groups would serve as meta-newsgroups or tags.  

For example, assume there was a “Java algorithms” named group the newsgroups shown in 

Figure 11 or the tags shown in Figure 19. Then, in an interface similar to the Gmail one shown in 

Figure 18, users could type the name of this group in the same field as they would normally type 

newsgroups or tags. After selecting or completing the name of the group, it would then be 

replaced with the newsgroups or tags that make up that group. 

As with any other named group, a major issue is the creation of such groups, as previously 

discussed in the beginning of this chapter. Therefore, the usefulness of these groups in these 

systems may also benefit from foundational named group recommendations. However, the way 

these groups form may be very different from the way named groups in email or Facebook form. 

In Facebook and email, these groups are made up of users, but in Usenet and Stack Overflow, 

these groups are made up of what are essentially topic areas. The relationships between users 

may form differently than the relationships between topic areas, and therefore groups may not be 

inferred in the same ways. 

Despite the possibility of difference in group formation, it was our next goal to apply the 

previously successful cross-application approach to Usenet and Stack Overflow. If this approach 

were to be successful in both systems, it would be successful in four systems across two 
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domains. Furthermore, this would imply a similarity in the way people communicate across the 

various domains, across the various systems, across topic tags and users. This would imply that 

even more cross-pollination of ideas could be applied amongst these different dimensions. 

This idea of grouping topic or non-user elements is not new.  Various other work have 

identified methods for automatically identifying overlapping groups of such elements.  For 

example, the previously described work of Palla et al. [83] introduced a method for determining 

overlapping groups which they tested on interactions between protein pairs and free associations 

between word pairs.  However, to our knowledge, no work has generated named group 

recommendations for such non-user elements and shown it is more effective to use such groups 

than not using such groups.   

In order to perform such an evaluation and remain consistent as we evaluated the cross-

application approach, we used the same process detailed in section 4.3 to test groups in Usenet 

and Stack Overflow. This meant we needed to again accomplish four steps: (1) collect data, (3) 

set parameter values, (2) identify metrics, and (4) measure prediction results. 

4.4.1. DATA COLLECTION 

Rather than conduct a user study for this portion of the dissertation, we opted instead to use 

publicly accessible datasets. While public datasets allow less control over the data collection 

process, they allow easier replication of results. Because these datasets are publicly available, 

others can use that same data set and our methodology to replicate any experiments we may 

conduct. 

Fortunately, there are publicly accessible datasets for both Usenet and Stack Overflow. In our 

case, we used the 20 Newsgroups dataset [118] for Usenet data, which contains a collection of 

posts and responses sampled from 20 different popular Usenet forums (or newsgroups).  For 
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each forum, they sampled 1000 posts. This yielded a total of 20,000 messages in the data set. 

Using the Message-ID field in these posts’ headers, which has a unique value for each unique 

message according to the Internet Message Format [88], we removed any duplicate messages in 

the dataset. This left 19,466 total messages on which to test the group recommendation schemes. 

Moreover, Usenet is a particularly good choice to evaluate predictions for collaborative systems, 

because the first CSCW prediction system used Usenet for its motivation and evaluation [87].  

For Stack Overflow data, we used the Stack Exchange public data dump [113], which 

contains all questions asked on the Stack Exchange sites that were licensed under the Creative 

Commons license.  In addition, the data set contained each question’s comments and answers.  

The original data set contained 3,153,019 questions, each of which is the root of a thread that 

contains comment or answer messages in response to the root question. This number of messages 

is typically unfeasible for running multiple tests of multiple approaches. Therefore, we randomly 

sampled 10,000 questions from this data set, and these questions were used to test the different 

foundational named group recommendation approaches. This number was chosen because its 

size matches the order of magnitude of the size of the 20 Newsgroups. Based on the use of the 20 

Newsgroups dataset in past work to effectively evaluate various predictive methods [17,39], it is 

reasonable to assume a similarly sized data set of Stack Overflow questions can be used in a 

similar manner. 

4.4.2. CHOOSING PARAMETER VALUES 

Our next task was to choose appropriate parameters for the various graph generation 

approaches. To remain consistent, we used the same CDF-based approach we used in email to 

select these parameters.  
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However, we did not have personal accounts with which to generate the necessary CDF 

plots.  Instead, to select the data used in this approach, we divided the posts from each data set 

into a training set and test set. The training set was made up of the first 80% of posts when 

ordered chronologically, and the test set was made up of the last 20% of posts. Then we 

determined parameter values by analyzing the training portion of each test data set. 

The first task was to select among the candidate half-lives and time thresholds, sent 

constants, and edge weight thresholds.  

For time thresholds and half-life values, we again considered 1 hour, 1 day, 1 week, 2 week, 

1 month, and 2 months. The CDF plots for edge weights with each of these time values is shown 

for Newsgroups in Figure 20 and for Stack Overflow in Figure 21. 

 

Figure 20. Newsgroup edge-weight CDF for same sent-constant, various half-lives 

As Figure 20 illustrates, with 1.0 hour or 1.0 day half-life values in Newsgroups, there was 

little variation in the edge weights. Conversely, the remaining half-life values (1 week, 2 weeks, 

1 month, 2 months, 1 year, and 2 years) showed much more variation with respect to edge 
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weights.  Therefore, we chose to use 1 week, 2 weeks, 1 month, 6 months, 1 year, and 2 years as 

time threshold and half-life values for graph generation in Newsgroups. 

In the case of Stack Overflow, none of the of the time values yielded much variation in edge 

weights, evidenced by all CDF plots tending towards the upper left corner in Figure 21.  This 

possibly indicates that time may not be helpful in predicting useful named groups. However, in 

the interest of testing various approaches, we chose to use the maximum time frame (2 years) as 

a time threshold and half-life value, so the most amount of posts would be used to generate 

groups. 

Choosing a sent constant for both Newsgroups and Stack Overflow was a different process 

than that of email. Because these posts were collected as public posts rather than individual 

account posts, these data sets do not provide a complete picture of posts from individual 

accounts. Moreover, because we wanted to keep things in their original chronological order, we 

only had a single training and test set for each of the Newsgroup and Stack Overflow data sets. 

This also means that there is not a single sender or receiver for the training and test set, and 

therefore it is not possible to classify any message as sent or received. Therefore, we treated 

every message as received, and thus the sent constant was not used. 
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Figure 21. Stack Overflow edge-weight CDF for same sent-constant, various half-lives 

As in the case of email, we used an analysis of edge weight distributions to determine edge 

weight thresholds. The edge weight distributions in Newsgroups tend to follow similarly shaped 

distributions, as evidenced by the CDF plots in Figure 20. In the CDF plots, there is an initial flat 

low slope portion of the graph, then a large increase in slope, and finally a plateauing effect. The 

initial flat portion of the CDF plot implies there is little variation in edge weight before the stark 

increase in slope. Because these edge weights are the smallest, it is likely that these small 

variances can be attributed to noise. Therefore, in the interest of removing noisy, unhelpful edges 

from the graphs, we chose the point at which this stark slope transition occurred (or the elbow) as 

the edge weight threshold for each graph. This gave us the parameters in Table 7 for Newsgroup 

graph generation.   
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In the case of Stack Overflow, there is very little relative variation in edge weights. 

Therefore, we chose a much smaller value of 0.01 as the edge weight threshold to avoid issues of 

rounding errors when a value may be close to zero. This gave us the following approaches to 

group generation. 

 

4.4.3. IDENTIFYING METRICS 

To remain consistent and comparable to the results in email, we used the metrics used to 

evaluate the same types of recommendations in email. Newsgroups in Usenet and tags in Stack 

Overflow can be addressed using the same interface, where groups are initially only named or 

rejected, and groups are addressed in posts or questions using member replacement. Therefore, 

we determined that the same metrics were applicable in Usenet and Stack Overflow. 

Table 7. Newsgroup graph generation approaches and their constants 

Graph Generation 

Approach 

Time 

Threshold 
Half-life 

Edge Weight 

Threshold 

Simple Graph - - - 

Simple Threshold 1 Week - - 

Simple Threshold 1 Month - - 

Simple Threshold 6 Months - - 

Simple Threshold 1 Year - - 

Simple Threshold 2 Years - - 

Interaction Rank - 1 Week 0.02 

Interaction Rank - 1 Month 0.6 

Interaction Rank - 6 Months 1.7 

Interaction Rank - 1 Year 1.8 

Interaction Rank - 2 Years 0.01 

 

Table 8. Stack Overflow graph generation approaches and their 

constants 

Graph Generation 

Approach 

Time 

Threshold 
Half-life 

Edge Weight 

Threshold 

Simple Graph - - - 

Simple Threshold 2 Years - - 

Interaction Rank - 2 Years 0.01 
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Furthermore, since our sub-thesis also states that these approaches are better than not using 

these groups, we again used the Student t-test to verify the previously-described null hypotheses 

were rejected with p < 0.05.  As before, this approach could also suffer issues of false discovery, 

since we were testing multiple recommendation approaches. Therefore, as with email, we again 

used Benjamin & Hochberg’s [24] FDR method to check that we did not falsely reject more than 

0.05 of our null hypotheses. 

Because these datasets were not tested individually by account, there was only one training 

set and one test per dataset.  This meant that there was only one value for each of the number of 

groups recommended, portion of groups named, and match rate metrics.  Therefore, each metric 

would have a standard deviation of zero, which would yield computational errors to determine 

the p-values necessary for significance tests.  Therefore, in these cases, significance tests were 

not conducted for these metrics. 

4.4.4. RESULTS AND ANALYSIS 

The results of the experiments are shown in Table 9 and Table 10 for Usenet and Stack 

Overflow, respectively. As in the email analysis, the approaches with the lowest relative 

additions are bold and in green.  As in the email experiments, statistical significance is reported 

using the symbols * and † in the respective table entries. Only the presence of both symbols 

indicates a significantly good result. 

In Table 6, the approaches with the lowest group-centered and message-centered relative 

additions are denoted in bold green. As can be seen in Table 9, the approach with the lowest 

relative additions uses the Time Threshold graph generation approach with a threshold of 1 

month. This approach yielded an approximate 90% reduction of effort with respect to additions 

when compared to addressing messages manually. This indicates a stark decrease in required 
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user effort in terms of additions. Moreover, according to the mean relative deletions in this case, 

users were only required to remove a small portion of a recommended group’s members on 

average.   

Interestingly, this most successful approach in Usenet was also the most successful approach 

in email. This is likely due to the fact that both email messages and Usenet posts use the same 

message format for communication [88].  In this format, messages are separated into a header 

portion and a body portion. The body of a message contains the actual contents of the message, 

and the header portion contains a variety of fields which provide various data for the sending or 

sorting the message (such as “date”, “from”, “subject’).  In order to specify the recipients of 

these messages, users must fill in one or more of these header fields with a comma separated list 

of recipients.  In Usenet, users fill in the “newsgroups” field with the list of newsgroups that to 

which a message is sent.  Similarly, in email users must fill in the “to”, “cc”, and “bcc” fields 

with lists of email addresses, where each address maps to a recipient or a listserv of recipients. 

Because users must use similar methods to construct and address messages in both systems, 

it is logical to assume that users communicate similarly in both systems.  If users communicate 

similarly, it may indicate that there is some commonality in how they group items. 
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However, as in email, many of these results overlap when using standard deviations as error 

bounds.  Therefore, it is not clear that these top approaches are the absolute best for other, 

general samples of Usenet posts.  However, given that all of our results passed our t-test and 

FDR analyses, it is likely that all of these approaches will require fewer additions and deletions 

than manual in other samples of Usenet posts.  

Similarly in Stack Overflow, all cases were statistically better than manual according to t-

tests and FDR analysis.  However, relative additions were lowest in the Time Threshold graph 

Table 9. Results of foundational named groups for non-user elements in 20 Newsgroups 

Method Parameters 

Groups 

to scan 

  

Portion 

of groups 

named  

Relative 

deletions 

Relative 

additions 
Perfectly 

matched 

messages mean stdev mean stdev 

Simple - 134 0.343 0.231*
†
 0.151 0.080*

†
 0.153 0.003 

Time 

Threshold 

threshold= 

1 week 
92 0.370 0.271*

†
 0.157 0.108*

†
 0.187 0.078 

threshold= 

1 month 
100 0.330 0.277*

†
 0.150 0.083*

†
 0.166 0.019 

threshold= 

0.5 years 
100 0.330 0.225*

†
 0.137 0.094*

†
 0.175 0.012 

threshold= 

1 year 
100 0.330 0.225*

†
 0.137 0.094*

†
 0.175 0.012 

threshold= 

2 years 
100 0.330 0.225*

†
 0.137 0.094*

†
 0.175 0.012 

Interaction 

Rank 

half life=1 

week 

wout=0.02 

107 0.308 0.227*
†
 0.147 0.093*

†
 0.176 0.012 

half life=1 

month 

wout=0.6 

107 0.308 0.227*
†
 0.147 0.093*

†
 0.176 0.012 

half life=0.5 

years 

wout=1.7 

106 0.311 0.215*
†
 0.141 0.099*

†
 0.180 0.012 

half life=1 year 

wout=1.8 
107 0.308 0.227*

†
 0.147 0.093*

†
 0.176 0.012 

half life=2 

years 

wout=0.01 

107 0.299 0.242*
†
 0.154 0.102*

†
 0.181 0.015 

* indicates that p < 0.05, †indicates that the null hypothesis is rejected according to FDR test 
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generation approach with a threshold of 2.0 years. While this is the same graph generation 

approach that was most successful in both email and Usenet, it uses a different time threshold 

value than in the other two cases. 

Stack Overflow also differs from the other two data sets in the portion of recommended 

groups that were named rather than rejected.  In Stack Overflow, this tended to be lower than 

results from either of the other data sets.  At its highest value, this rate was 4.6% in Stack 

Overflow, where it was at most 46.9% in email and 37.0% in Newsgroups. As evidenced by the 

0% perfect match rates, there were no perfect matches in Stack Overflow, while the other 

approaches yielded at least some perfect matches. 

These differences in results indicated that different datasets require different group 

recommendation approaches to achieve the best results. This implies that while cross-application 

of foundational named group recommendation schemes can be applied from Facebook to these 

systems and to non-user elements, there are differences between different systems in how these 

foundational named group recommendation schemes should be applied.   

Despite the need to tune the recommendation approach to the system, this indicates some 

similarity in how users communicate on these systems and how they communicate with user or 

non-user elements.  If no such similarity existed, these foundation group recommendations 

should not yield better than manual addition and deletion results.  However, the need to tune the 

approaches depending on the systems implies that, even if there is similarity in how users 

communicate across the systems, this communication is not exactly the same across these 

systems. 

It is also possible to identify the similarity of these systems in terms of their experimental 

performance. Since email and Usenet share the same approach and parameters that yield the best 
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performing relative additions, we ranked them as most similar.  Comparatively, since Stack 

Overflow required different parameters for its highest ranked approach, it is less similar to either 

Usenet or Email. Intuitively, this is not surprising, because  as mentioned previously, Usenet 

posts and Email messages share a common format which requires the specification of a header 

[88].  Stack Overflow, on the other hand, does not share this format. Instead, users must specify 

tags below the message’s body, which may indicate that users more often first create a question’s 

body and then specify tags.  Comparatively, in email and Usenet messages, the header, and thus 

the recipient field(s), occurs above the message.  This may indicate that users more often first 

specify recipients, and then create a message’s body in email and Usenet.  Intuitively, it is likely 

that systems in which users construct messages in the same way will share more similarities than 

those in which users do not. 

 

Despite the differences found in the results across the datasets, the results indicate that at 

least some approaches worked better than manual in each system in terms of relative additions 

and deletions.  And in all cases, some groups and messages could be matched such that they 

reduced addition and deletion costs. Therefore, we claim that we have supported the following 

sub-thesis: 

Table 10. Results of foundational named groups for non-user elements in Stack Overflow 

Method 
Parameters 

 

Groups 

to scan 

  

Portion 

of groups 

named 

  

Relative 

deletions 

Relative 

additions 
Perfectly 

matched 

messages mean stdev mean stdev 

Simple - 628 0.038 0.377*
†
 0.048 0.276*

†
 0.165 0.000 

Time 

Threshold 
threshold= 

2.0 years 
612 0.046 0.366*

†
 0.051 0.269*

†
 0.175 0.000 

Interaction 

Rank 

half life=2.0 years 

wout=0.01 
628 0.038 0.377*

†
 0.048 0.276*

†
 0.165 0.000 

* indicates that p < 0.05, †indicates that the null hypothesis is rejected according to FDR test 
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This claim has many of the same caveats as the claim that we have supported Sub-Thesis I, 

because the recommendation approach suffers from many of the same drawbacks.  We did not 

correct or prune any messages that may incorrect or missing newsgroups or tags, the metrics did 

not capture cases where users may use multiple groups to address a post, and the metrics do not 

capture effort to use groups in tasks other than addressing posts. 

 

4.5. BURSTY GROUP RECOMMENDATION 

Assuming all methods for foundational named group generation in Facebook, email, Usenet, 

and Stack Overflow are successful in practice, there is still an issue of when to create groups.  

Past approaches have relied entirely on users to determine when groups are created by relying on 

users to request foundational group recommendations. As discussed in section 4, it is likely that 

users do not know when to appropriately create groups.  This can be problematic because 

creating groups too early may yield groups with incorrect members and creating groups too late 

may waste effort on creating groups that are never used again. 

To illustrate how these past approaches could be improved, consider the formation of the 

hypothetical “Faculty Search Committee” named group.  In this case, a better approach may 

recommend a named group be created for the faculty search committee after the search criteria 

have been defined but before all candidates have been interviewed or the position has been filled. 

Sub-Thesis II: Non-User Element Foundational Named Group Recommendations 

It is possible to cross-apply foundational named group recommendation approaches from 

Facebook to recommend named groups of tags and newsgroups in Stack Overflow and 

Usenet respectively, respectively, such that some recommendations will be accepted and 

the use of the accepted recommended groups in future messages will require less effort 

than if no such recommendations had been generated. 
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In this way, members of the committee would have been properly vetted to ensure they could 

evaluate the candidates based on the search criteria, but group would be formed early enough 

that it would still be useful when addressing the committee. Such recommendations could 

address the drawbacks of past foundational approaches by automatically determining when 

groups would be helpful. Furthermore, groups are less likely to be stale because we can 

recommend the creation as they are useful and not after the fact. 

To generate such recommendations, we have developed a bursty group recommendation 

approach. The idea behind this approach is that users are implicitly grouped together when they 

perform collaborative actions together, such as receiving the same shared communication or 

responding to, commenting on, or voting on posts or messages. Moreover, these groups may 

imply bursts of change in the social graph, where new nodes or edges are added.  Therefore, each 

time a set of individuals performs collaborative action together, there is the implicit indication 

that a group exists. If this initial grouping of collaborators is novel (i.e. this specific set of people 

have not collaborated together previously), it indicates that there was likely a burst of change in 

the social graph.  This initial grouping of collaborators can therefore act as a seed that can then 

be merged with other possible users or elements to form a recommended named group. 

To illustrate the concept behind this approach, consider our example of a department forming 

a faculty search committee. The model would not recommend group creation at unhelpful times, 

such as when an email message is sent to all members of the department asking for volunteers 

for the committee. Because the whole department was addressed together in the past, this 

grouping is not novel, and no group creation would be recommended. On the other hand, group 

creation is recommended when it is helpful. For example, the grouping would be novel if, after 

the faculty search committee’s first meeting, a member emails the rest of the committee a draft 
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of an advertisement of a position. Because of the novel grouping of collaborators in the email 

message, a group creation is recommended using the addressed members as a seed. Moreover, by 

using the grouping as a seed rather than as the final named group members, the model can avoid 

issues of missed members, such as if the sender forgot to include some other members of the 

faculty search committee. 

To apply this general concept, we have detailed the algorithm behind the approach in 

pseudocode in Figure 22.  As the figure indicates, the algorithm requires three global variables: 

pastSeeds, recommendedGroups, and foundationalRecommender.  The pastSeeds variable 

tracks which seeds have been used to generate recommendations to ensure the same seed is not 

used multiple times to generate recommendations.  The recommendedGroups variable tracks 

which groups are presented to the user as recommendations to ensure no recommended group is 

presented to the user more than once.  Finally, the foundationalRecommender variable is non-

bursty foundational named group recommender that is used to generate candidate bursty 

recommendations.  By including this recommender, our bursty approach is composable with 

other non-bursty approaches, and if those other approaches are adapted or improved, the bursty 

model can also adapt and improve. 

The actual logic of this approach begins with the method signature on line 1, which takes the 

arguments pastMessages, which is the chronologically ordered array of all past messages seen 

up to this point, and currentMessage, which is the most recent of the past messages. 

This currentMessage is used immediately to retrieve the seed via the collaborators 

method call (line 2). What is returned by collaborators differs based on the type of message 

passed as an argument.  If it is an email message, the collaborators are the members of the 

FROM field and the recipient fields (TO, CC, and BCC), collaborators in a Usenet post are the 
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newsgroups to which the message is addressed, collaborators in a Stack Overflow question are 

the tags associated with that question, and collaborators in a Facebook post they would be all the 

people who commented on the post, liked the post, or were tagged in the post or its comments. 

 

Figure 22. Pseudocode for the bursty foundational group recommendation approach 

This extracted seed is then compared against past seeds (line 3).  If the current seed has been 

seen before, then we do not use it to generate recommendations.  This is because the bursty 

model only recommends groups based on bursts of change in the social graph (or the addition of 

new nodes and edges).  If the seed has been seen before, it will not cause such bursts of change 

in the social graph, and therefore not necessitate bursty recommendations. 

However, if the seed is a novel one (i.e. it has not been seen before), then it implies a 

possible burst of change in the social graph.  It can therefore be used to generate bursty 

recommendations.  In this case, the seed is then added to past seeds (line 7), and a new set of 

Global variables 
pastSeeds: the set of seeds used to generate past recommendations, 
initially empty 
recommendedGroups: the set of past groups that have already been 
recommended, initially empty 
foundationalRecommender: an implementation of a non-bursty approach to 
make foundational named group recommendations from past messages 
 
 

1 createBurstyGroups(pastMessages, currentMessage) 
2   seed = collaborators(currentMessage) 

3   if seed ∈ pastSeeds 
4   then 

5    return ∅ 
6   end 
7   pastSeeds.add(seed) 
8   recommendedGroups = foundationalRecommender.recommend(pastMessages) 
9   for recommendation in recommendedGroups 
10    if !recommendation.containsAll(seed) || 

11       recommendation ∈ seenRecommendations 
12    then 
13     recommendedGroups.remove(recommendation)  
14    else 
15     seenRecommendations.add(recommendation) 
16    end 
17   end 
18    return recommendedGroups 
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recommended groups are generated from past messages (line 8).  Each of these recommended 

groups is then checked before being presented to the user (lines 9-17). This check is to ensure 

that all recommendations presented to the user (a) are driven by the burst of change in the social 

graph from currentMessage and (b) are not recommendations that the user has previously seen 

and addressed.  Therefore, each group that (a) is a not super set of the seed or (b) has been 

previously presented to the user will then be filtered from the list of group recommendations.  

The filtered list of group recommendations is then returned to be presented to the user as 

foundational named group recommendations.  

This idea of filtering which recommendations are presented to users has also been used in 

other work.  For example Bauer et al.’s [22] approach for predicting policy misconfigurations in  

access control systems used such filtering. Their predicted misconfigurations in an access control 

system by predicting new atomic policy units, where each unit specifies whether a single user 

may have access to a single resource. They limit which prediction policy units were presented to 

users based on what predictions users had already seen and what would likely benefit the users.  

Presented predictions must have never been presented to users before and must allow the system 

to approaches an intended benefit/accuracy ratio, which the user had previously specified. 

We will target evaluation of this approach at both communities and email. This will allow us 

to address the previously mentioned drawbacks of past approaches in both domains. The original 

goal was to reuse the email, Usenet, and Stack Overflow data sets to evaluate the bursty 

approach in these systems as well evaluate the bursty model using Facebook data, since that is 

where the original non-bursty Hybrid Clique Merger algorithm was first applied successfully. 

To collect Facebook data, we worked with two REUs, Haoyang “Isabella” Huang and Ziyou 

“Will” Wu, to update and expand the tool used to collect data for the Hybrid Clique Merger 



 

151 

 

algorithm. These modifications to the tool were to update the tool to match changes in 

Facebook’s API and to allow the collection of anonymized data about bursty collaborations.  To 

collect this bursty data, the updated tool collected the 400 most recent public posts from a user’s 

wall.  For each of these posts, the tool would record the date of the posts and anonymized ids of 

all collaborators in the post. 

Unfortunately, during pilot testing to collect bursty data, we ran into issues with this tool. For 

many accounts, the tool failed to properly authenticate with Facebook. This led to us not being 

able to collect any data for many users.  We also had significant issues with many accounts not 

receiving notifications that their recommendations were available.  This would then lead to 

significant issues where recommendations could not be evaluated.  By the time these issues were 

addressed, it was not reasonable to recruit participants, conduct the experiment, and evaluate the 

results in time to report any conclusions in this dissertation.  Instead, we limited the evaluation of 

the bursty approach for this dissertation to email, Usenet, and Stack Overflow data. This means 

that evaluation of the bursty model in Facebook is left for future work.  However, as important 

note, at the time of writing Ziyou “Will” Wu is continuing his work as an REU by conducting 

this Facebook study and planning on completing the study for his honors thesis. 

Having chosen to limit the evaluation of the bursty model to the previously evaluated email, 

Usenet, and Stack Overflow datasets, it is possible to evaluate recommendations from the bursty 

approach using a similar model to one used for non-bursty foundational recommendations. 

Because the main goal is to judge that these approaches effectively recommend when to create 

groups, it is not important that the bursty approach’s recommendations require less effort than 

manual or recommendations from past approaches.  Instead, if effort does not exceed values for 
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past approaches, the bursty recommendations can be judged effective, because they will have 

included the benefit of generating recommendations without requests from the user.  

To perform such evaluations, we used the datasets discussed previously in this chapter.  This 

will allow the results of any experiments with the bursty model to be comparable with past, non-

bursty approaches. 

4.5.1. EXPERIMENT DESIGN 

However, testing the bursty approach requires a modified methodology of that used for non-

bursty models.  In the previous testing for foundation named group recommendations, we 

assumed that groups would only be created once.  Therefore, in the test environment, 

recommendations were only generated once after the last message/post in the training set but 

before the first message/post in the test set.   

On the other hand, the bursty model recommends groups many times, as indicated by the 

currentMessage argument in Figure 22.  Each time user send or receive a message in the data 

sets, the bursty model may recommend groups in a realistic scenario.  In the worst case, users 

must handle named group recommendations with each new message.  Therefore, in order to 

match reality, the bursty model requires a testing environment that uses more than one message 

from each account or dataset to trigger the bursty approach. 

When allocating which messages to trigger the bursty approach for testing purposes, it is 

important that not all messages fall into this allocation.  If all messages fell into this allocation, 

the first messages would fall victim to the cold start problem, a common problem in 

recommender systems [99].  The cold start problem arises when there is little to no data that can 

be used to generate recommendations.  In the case of the bursty model, the first few messages 

would have too few elements which would lead to a limited or non-existent social graph.  These 
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limited social graphs would lead to the recommendation of no groups or incorrect groups, which 

would skew any test results.  Moreover, if all messages are used to generate groups, the last 

messages would have little to no ideal cases against which to test their recommendations.  This 

would lead to either untested named group recommendations or skewed results by matching a 

group to an incorrect message. 

To avoid these issues, we only used a portion of messages to trigger bursty 

recommendations.  To allocate this portion of triggering messages, we formed chronologically 

sorted lists of messages from each of the chosen data sets.  In the email study, there were 

separate email lists for each email account.  In the Usenet and Stack Overflow datasets, each 

dataset had its own list of posts or questions, respectively. 

As shown in Figure 23, we then divided the messages in these lists (represented by 𝑚𝑘 

values in the figure) into the categories training (red in the figure), triggering (green in the 

figure), and test messages (blue in the figure). We reserved the last 20% of messages for solely 

testing recommendations as we had done in the previous cases. Within the remaining first 80% 

of messages, the first 50% of these (or first 40% of all messages) were reserved solely as training 

and would not be used to trigger the bursty recommendations.  This ensures each triggered bursty 

recommendation would have some social graph off which to base its recommendations.  

 
Figure 23. Evaluation method for bursty foundational named group recommendations 
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The remaining middle 40% of all messages would be flexible in their use.  For each message 

𝑚𝑖 in the triggering messages category, we generated bursty group recommendations.  As Figure 

23 indicates, these bursty group recommendations were then evaluated against all messages that 

occurred chronologically after 𝑚𝑖.  Some of these evaluation messages may include some of 

those in the triggering messages category, and the evaluation messages were guaranteed to 

contain all messages from the test messages category.  By using this method, it was possible to 

ensure that all bursty group messages had some minimum number of test messages against which 

to compare.  Furthermore, it was also possible to evaluate recommended groups as they were 

created and allow recommended groups to match to more messages than the last 20% of all 

messages.  To do so, we allowed recommended groups from the bursty model to match to any 

message that occurred chronologically after the message that triggered their recommendation. 

4.5.2. METRICS 

Using this experiment design, it was possible to assume users would name or reject 

recommended groups in the same way and use recommended groups in messages similarly. 

Therefore, it was then possible to measure the effectiveness of the named groups using the same 

metrics described earlier.  This would allow the bursty recommendation approach to be 

compared to past approaches without running any new experiments.  Moreover, it was also 

possible to compare the significance of the measurements using both the t-tests and FDR rate 

used in previous foundational named group experiments.  

Since the goal was to show that this performed as well as or better than previous 

recommendation approaches, we did not test against all the possible parameters identified in 

sections 4.3.3.2 and 4.4.2.  Instead, we chose to only use approaches which resulted in the least 

relative additions (identified in sections 4.3.3.4 and 4.4.4). Since these approaches were judged 
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to be the best non-bursty group recommendation approaches, if the bursty approach must either 

match or outperform them.  Intuitively, if bursty does not outperform non-burst approaches, then 

users would prefer to use one of the previous approaches over the bursty one. 

However, as in the past experiments in section 4.4, we were unable to collect more than one 

value for each of the various metrics for number of groups recommended, portion of groups 

named rather than rejected, and perfect match rates for experiments with Usenet or Stack 

Overflow data. Therefore, we did not collect standard deviations of these values and could not 

perform significance tests of these metric results. 

4.5.3. RESULTS AND ANALYSIS 

The results of the experiments using the bursty approach with email messages, Usenet posts, 

and Stack Overflow questions are shown in Table 11, Table 12, and Table 13, respectively.  

Again, as in the past tests, statistical significance is reported using the symbols * and † in the 

respective table entries. Only the presence of both symbols indicates a significantly good result. 

 

As indicated in Table 11, the bursty model required slightly fewer mean relative additions 

and deletions than the respective non-bursty approach, indicating in the average case that it 

performed slightly better with respect to effort addressing messages. Furthermore, in the mean 

case, the bursty approach required the scanning of fewer recommended groups, and a higher 

percentage of those recommended groups were accepted and named. When coupled with the fact 

Table 11. Results of bursty named groups in email 

Method 

half 

life 
threshold 

Groups 

to scan 

Portion of 

groups named 

Relative 

deletions 

Relative 

additions 

Perfectly 

matched 

messages 

    mean stdev mean stdev mean stdev mean stdev mean stdev 

Time 

Threshold 
- 

1.0 

month 
7.55 7.46 0.37 0.23 0.209 0.107 0.074 0.084 0.033*

†
 0.037 

* indicates that p < 0.05, †indicates that the null hypothesis is rejected according to FDR test 
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that the bursty approach does not include the user cost of deciding when to request group 

recommendations, we judged it to be better than the non-bursty approach for our particular data 

set.  

However, we were not able to reject the null hypotheses about any relative additions, relative 

deletions, or match rate metrics.  Therefore, we could not claim that these results apply to other 

samples.  This may be due to the limited sample size of the user study, which contained only 31 

different accounts. To determine whether this applies to a more general population, future work 

may evaluate these predictions on a future data set.  

Interestingly, however, the rate of perfect matches seemed to increase with statistical 

significance in email with the bursty approach. These mean perfect match rates are both 

approximately 3%, while the previous results were approximately 0.3% in both cases. While a 

majority of matches are still not perfect in the bursty case, it is an order of magnitude increase in 

value, which is a significant result. 

The cause for this stark increase may be due to the periodic group generation that occurs in 

the bursty approach. Because the bursty approach generates foundational named groups 

recommendations with each new message, foundational groups are generated at different times. 

Because these recommendations occur at different times, they may also depend on different 

social graphs. Therefore, the groups that are recommended are more suited towards the graph at 

that time period, and are more likely to be perfect matches towards some future messages closer 

to the time in which the groups were recommended. Therefore, these perfect match results may 

suggest that the utility of groups change over time. Therefore, even though the bursty seems not 

to be successful in email, it may be more helpful to periodically recreate groups or update the 

membership groups to match this change over time. This idea is supported by other work that has 
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identified that implicit, unnamed groups of email addresses with whom users communicate in 

email change over time [91]. 

This idea of the temporal utility of groups is also supported by similar increases in perfect 

match rates in the Stack Overflow data. In non-bursty results, the approaches with the lowest 

relative additions in Stack Overflow resulted in 0.0% perfect matches. These values are not large 

enough to necessarily be useful to users, but they are improvements over previous results. 

Therefore, they indicate that some aspects of the bursty model have some positive effects. 

 

The positive effects of the bursty model are best illustrated by the relative additions and 

deletions in the Usenet and Stack Overflow tests. When using the graph generation approach that 

resulted in the lowest relative additions for Usenet in the non-bursty model, the bursty model 

resulted in significantly decreased relative additions and deletions. The bursty approach tested on 

Stack Overflow showed similar success. Relative additions and deletions were significantly 

lower than the same metric in the corresponding approach with the same graph-generation 

approach. 

 

Table 12. Results of bursty named groups in 20 Newsgroups 

Method 

Parameter or threshold 

 
Groups 

to scan 

  

Rate of 

group 

rejection 

  

Relative 

deletions 

Relative 

additions 
Perfectly 

matched 

messages  half 

life 

edge 

weight 
time  mean stdev mean stdev 

Time 

Threshold 
- - 

1 

month 
532 0.917 0.186*

†
 0.148 0.028*

†
 0.090 .012 

* indicates that p < 0.05, †indicates that the null hypothesis is rejected according to FDR test 

Table 13. Results of bursty named groups in Stack Overflow 

Method 

Parameter or threshold 

 
Groups 

to scan 

  

Rate of 

group 

rejection 

  

Relative 

deletions 

Relative 

additions 
Perfectly 

matched 

messages  half 

life 

edge 

weight 
time  mean stdev mean stdev 

Time 

Threshold 
- - 

2 

years 
1562 0.881 0.078*† 0.150 0.048*† 0.123 0.068 

* indicates that p < 0.05, †indicates that the null hypothesis is rejected according to FDR test 
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These results indicate that a bursty approach is a better foundational group recommendation 

approach in Newsgroups and Stack Overflow than non-bursty approach. In these data sets, the 

required relative additions or deletions are lower. This indicates that the cost to address messages 

in bursty approaches is at most the same cost as in non-bursty ones.  Furthermore, the bursty 

approaches have the added benefit of generating recommendations without explicit user action, 

which further reduces user effort. Therefore, the total effort for the user is likely decreased in the 

bursty case. 

The same claim cannot be made in the email case. Since the null hypotheses could not be 

rejected for any of the relative additions and deletions, email may require more effort to address 

groups with groups recommended via a bursty approach than a non-bursty one in samples other 

than our user study. Therefore, it is not possible to assume that the total user effort will be 

reduced.  

Based on these results, we were able to specify the following two sub-theses:  

 
 

Sub-Thesis III: Email Foundational Bursty Named Group Recommendations Sub-Thesis 

In data from our user study, recommending the bursty creation of named groups in email 

based on seeds from collaborative events will be reused more often and will require the 

same or fewer additions and deletions than if they were created using past named group 

recommendation schemes. However, it is not clear that such results will apply in other 

data sets. 
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This discrepancy in the effectiveness of bursty approaches may be linked to the sizes of the 

data sets. As mentioned, each email account contained at most 2,000 messages. On the other 

hand the Usenet data set (20 Newsgroups) contained 20,000 posts and the sample of the Stack 

Overflow data set contained 10,000 questions. It may be that larger accounts on the same order 

of size as the other data sets may be more successful. However, testing this hypothesis would 

require a new study with more extensive collection of email data.   

Again, these claims about bursty foundation group recommendations in Email, Usenet, and 

Stack Overflow come with the similar caveats seen previously in non-bursty approaches. 

Sub-Thesis IV: Communities Foundational Bursty Named Group Recommendations Sub-

Thesis 

Recommending the bursty creation of named groups based in Newsgroups and Stack 

Overflow with collaborative events will be reused more often and will require the same or 

fewer additions and deletions than if they were created using past named group 

recommendation schemes. 
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5. EVOLUTIONARY NAMED GROUP RECOMMENDATIONS 

Suppose that users are able to create groups with all the correct members at the correct time, 

either through recommendations or other means. As mentioned previously, past work has 

observed that groups tend to be dynamic with new members being added and old members being 

removed over time [91]. Therefore, it is likely that groups will become stale at some point, and it 

is therefore important for named groups to evolve over time.  

Users can address named group evolutions in three ways, which are shown in Figure 24: 

1. Manual evolution - As other users are added to or removed from the user graph, the user 

evolves manually or automatically generated named groups using no tools. This is shown 

in Figure 24(a). 

2. Full Recommendation – A named group foundational recommendation tool is used to 

recommend a whole new set of named groups. This is shown in Figure 24(b). 

3. Change Recommendation – A tool recommends which named groups should evolve and 

how. This is shown in Figure 24(c). 
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Figure 24. Approaches to named group evolution 

To illustrate these approaches, consider the example illustrated in Figure 25. At time tk-1 

Joe’s social graph contained 6 individuals, Alice, Bob, Carol, David, Eva, and Frank, and two 

named groups, Research Group and Social Group, which are shown in Figure 25(a). Then 

between time tk-1 and tk, Joe’s company hired two new people, Greg and Hal, and Joe’s social 

graph grew by 1/3 to accommodate these two new members (Figure 25(c)). This growth of his 

social graph caused Joe to want to evolve his named groups to the ideal named groups in Figure 

25(b). 

In order to reach these ideal evolutions through the manual approach, Joe has to determine 

what has changed in the social graph between time tk-1 (Figure 25(a)) and tk (Figure 25(c)) and 

then evolve both named groups by adding Greg or Hal to each group. 

In this case, the manual approach has the possibility of being the most precise because it 

takes all of a user’s intentions into account. However, it requires significant work if the number 

of new individuals or existing named groups is significantly large or the graph has undergone 

significant amount of change. Moreover, this approach requires that the user identify changes 

New 

Named 

Groups 

Old Social Graph 

Old Named Groups 

Specify named 

group 

evolutions 

User effort Current Social Graph 

(a) Manual approach 

Current Social 

Graph 

Recommender 

Engine 

New 

Named 

Groups 

User effort 

Edit and label 

named group 

recommendations 

(b) Full recommendation approach 

Current Social Graph 

New Named 

Groups 

Recommend 

named group 

evolutions 

User effort 

Edit evolution 

recommendations 
Old Social Graph 

Old Named Groups 

(c) Change recommendation approach 



 

162 

 

between the different states of the social graph, which may not be feasible if the social graph is 

significantly large or has changed a significant amount.  

 

Full recommendation, which is illustrated in Figure 24(b), uses a foundational named group 

recommendation tool to generate the named groups from the evolved graph. This approach feeds 

Figure 25. Example of recommending expected named group growth 
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the current state to a named group recommender, which we call a recommendation engine, to 

generate new recommended named groups. The user then edits and labels these new 

recommendations. As mentioned earlier, foundational recommendation approaches can be 

divided into member-suggestion and group-creation. Each of these approaches has its pros and 

cons in the context of named group evolution. To illustrate, we continue with our running 

example where the social graph from Figure 25(c) is fed to a recommender engine.  

Consider the scenario where only Social Group changes by adding Greg and Hal, and 

Research Group remains unchanged. In general, member suggestion allows users to pick the 

groups in which no new members are to be added. In this scenario, the user may first 

unnecessarily ask for recommendations for Research Group. Alternatively, group creation may 

only present users with named groups that are recommended to change. If the recommendations 

made using member suggestion and group creation are both perfectly effective, then it can be 

assumed that, in group creation, a user will only handle named groups that change. Thus, when 

there are no or few unchanged groups, group creation can require fewer steps.  

However, because of group creation’s batch nature, it cannot use feedback to adjust 

recommendations. On the other hand, member suggestion’s iterative nature allows feedback 

throughout the recommendation process, which can be used to improve future recommendations. 

Consider the situation in which Greg and Hal should be added to Research Group and Social 

Group, respectively. Let us assume that without user feedback, both approaches predict the 

incorrect group for each user. After the user overrides its first wrong suggestion, member 

suggestion can correct its second prediction. Group prediction would require the user to correct 

both predictions.  
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To compare the three evolution approaches (manual, full recommendation, and change 

recommendation), we assume that the full recommendation engine uses group-creation 

foundational recommender engine. Assuming such an engine is effective, which has been shown 

to be true in past work, full recommendation could work better than the manual approach. 

However, the recommender engine may reintroduce previously rejected recommendations – a 

cost not incurred in the manual approach. Thus, it is difficult to predict which of these 

approaches will require less effort. If the social graph has changed by a small amount, the effort 

required to manually add the members might be less than that required to correct and label the 

predictions of a named group recommender. 

The problem with full recommendation is that its predictions do not take into account the 

ways in which the user has previously specified named groups either manually or by 

manipulating recommendations. This problem, of course, motivates the third approach of 

recommending changes to existing named groups based on the previous and new social graphs 

(Figure 24(c)). We refer to this approach as change recommendation. It attempts to combine the 

positives of the manual and full recommendation approaches. Just as with full recommendation, 

the user must accept, edit, or reject the recommendations, but change recommendation may 

reduce unnecessary user effort by basing its recommendations on previous user actions. 

Several approaches from past work can make or may be adapted to make such change 

recommendations. For example, member-suggestion approaches may be used to create these 

types of recommendations. Instead of taking an empty, unpublished group, a member suggestion 

approach may take an existing, non-empty, and previously published named group. The 

approach may then recommend how the group should evolve by suggesting new members to add 
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to the existing group. From these suggestions, the user may select appropriate additions, such 

that the group evolves correctly.  

To illustrate, two such member suggestion approaches can be applied to change 

recommendation in this way.  Amershi et al. [6] suggested new members to add to an existing 

group in Facebook based on shared profile properties shared among the new members of the 

group and the existing members of the group.  Hannon et al. [52] suggested people that should be 

added to the groups of followers and followees of Twitter users. These suggestions were 

determined based on similarity of the existing followers, the existing followees, and the potential 

people to add to each of these groups.  This similarity of two users was determined based on TF-

IDF similarity scores of the recent tweets associated with each user.  These associated tweets 

could be the tweets the particular users posted, the followers of the users posted, and/or the 

followees of the user posted. 

However, such approaches have specific limitations.  As the member suggestion only takes 

one group and does not choose among existing groups, both approaches require that users select 

which named groups for which evolutions should be recommended, whether that is all groups or 

just a fraction of all groups.  Just as users are likely to have difficulty correctly choosing which 

groups to create at a given time, they are likely to incorrectly choose which groups should 

evolve. If users don’t select enough groups to evolve, they could be left with stale groups that are 

no longer useful. If they select too many groups, they may exert additional effort to verify that 

groups do not require evolutions. 

In the case of Hannon et al. [52], since it only had two named groups per user, followers and 

followees, the system could recommend how both named groups should evolve without 

significantly increasing the load on the user to process these recommendations.  However, this 
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may not be true for cases when there are more than two named groups. Observations in past 

work indicate users often will create more than two named groups [6,15].  

Our goal was to develop a method for making change recommendations without requiring 

the user to select the named groups to evolve or limiting the total number of named groups. 

However, even if such goals are met, it is important that the overall effort required to accept, 

edit, or reject recommendations about named groups is not increased. If this effort were to 

increase, it could cause evolutionary recommendations to be more costly than using past full 

recommendation approaches.  

In order to develop such an approach, we performed a more in-depth analysis of how 

evolution occurs. By performing this analysis, it is possible to better focus the development of 

such an approach. 

5.1.  HOW EVOLUTION OCCURS 

Much of successful past work, including the experiments performed in section 4, has focused 

on generating named group recommendations using a connection-based approach. This implies 

that many groups, whether created manually or through recommendations, are linked to or 

influenced by structures in the social graph. Therefore, it is first helpful to identify how social 

graphs can evolve. 

Because we are focusing on generating named groups for a particular user, we will focus on 

the extraction of groups from an ego graph.  Therefore, we will also focus on how ego-centric 

graphs may evolve. Recall from section 2.4.1.3, that an ego-centric graph belongs to a particular 

individual, and the ego-centric graph only contains the individual with whom the owner shares 

an edge in the global graph. Those nodes only have edges between them when they share an edge 
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in the global graph and that edge is visible to the owner of the ego-centric graph (e.g. he can see 

that the nodes are friends or that they co-occur in some document). 

 

 

There are three ways that an ego social graph can evolve: members can be added (Figure 

26(a)), members can be removed (Figure 26 (b)), and connections can be changed (Figure 26 

(c)), any of which can occur concurrently. Each of these patterns of social graph evolution can 

occur for a variety of reasons.  Moreover, the driving forces behind these types of evolution in 

social graphs can change based on whether connections are explicit or implicit.  

If a system has explicit connections, owners of graphs specify that they have a relationship 

with individuals, such as marking other users as friends in Facebook, professional connections in 

LinkedIn, or co-authors in ResearchGate.  In these systems, social graphs typically add members 
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Figure 26. How a social graph can evolve 
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because owners have newly specified that they have a relationship with some other users.  Users 

may specify these relationships for a variety of reason.  For example, they may wish to 

communicate with someone they have not beforehand, they may be specifying a relationship that 

started elsewhere (e.g. at an in-person meeting), or they may just want to increase the size of 

their social graph to have higher social status. Similarly, social graphs in these systems typically 

lose individuals, because owners specify that they no longer have a relationship with some user.  

Again, this can occur for a variety of reasons.  For example, users may not be interested in 

further communication with these other users (e.g. removing high school friends after 

graduating), or users may no longer wish others to associate them with this other individual.  

Finally, changing connections occur when users other than the owner add or remove individuals 

from their ego social graphs. 

In a system with implicit connections between users, connections are based on relationships 

that are inferred from shared messages, such as those generated by our various graph generation 

approaches in section 4 or in other past work [42,69,91]. In these systems, individuals are added 

to the social graph only after they are seen together in a message for the first time.  Whether 

individuals are removed from a social graph depend on how relationships are inferred.  For 

example, if one uses the Simple Graph Generation technique (section 4.3.1.1), messages are 

never ignored for determining relationships. Therefore, individuals are never removed from a 

social graph with this technique.  On the other hand, if one uses the Time Threshold or 

Interaction Rank graph generation techniques (sections 4.3.1.2 and 4.3.1.3), individuals are only 

included in the graph if they communicated in recent messages and/or a frequent number of 

messages.  Similarly, because connections are directly dependent on relationships inferred from 

messages, connections may be added in all cases because two individuals are seen together in a 
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message for the first time.  However, connections may be removed only if one is using an 

approach that allows the ignoring of some messages.  In such cases, connections are removed 

only if the relationships that drive the connections are only present in older messages and/or 

infrequent messages. 

Therefore, in all systems, whether they support explicit or implicit connections, social graphs 

can evolve by adding new individuals and connections. On the other hand, only a portion of such 

systems allow social graph evolution with the removal of individuals and connections. Therefore, 

since this is a first attempt at named group recommendation approach specifically for 

recommending which groups should evolve and how, this approach will only take into account 

when a social graph evolves by adding new individuals or connections. This will allow this 

approach to be focused on specific types of evolutions, but still apply to a wide variety of 

systems.  

Based on this assumption that graphs may only evolve by adding new individuals or 

connections, the goal of our system is to recommend how groups should grow based on growth 

of the social graph.  Thus, our work applies directly to only those users who do not do “garbage” 

collection to delete connections or regroup users in a social graph. Moreover, this fits with the 

types of recommendation that would be made by the member suggestion approach of past work. 

In these approaches, evolution of a previously specified group can be recommended by 

suggesting which other individuals to add to the chosen group. We leave it to future work to go 

beyond this initial work to recommend the removal of users from groups. 

5.2. DEVELOPING A CHANGE RECOMMENDATION APPROACH 

The next task was to specifically develop a change recommendation approach. There are at 

least two approaches to creating a change recommendation engine, the composed and integrated 
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approaches. The former uses the results of a full (group) recommendation engine, which it treats 

as a black box, feeding the current social graph to the engine. It then matches and merges the 

results of the recommender engine with existing named groups to generate recommended 

evolutions of the named groups. As a result, it can be used with any such engine – hence the 

name composed. The integrated approach, on the other hand, makes its recommendations from 

scratch, building new evolutionary recommendations based on the existing groups and the social 

graph in its current and previous states. We chose the composed approach, because it leverages 

the previous research in recommender engines. However, an integrated approach may generate 

more precise evolutionary recommendations by basing recommendations on the changes rather 

than matching groups. 

The key issue in a composed approach is how it maps existing named groups to the 

recommended one(s). In all of these cases, we assume some recommendations will not be 

matched to any original named group. For instance, recommendation C is not matched to any 

previous group in our example in Figure 25, which may be because C should be created as a new 

group or be ignored because it is a poor grouping of users.  In order to be effective, a composed 

approach must correctly identify whether a recommended group should be matched with any 

previously existing groups.  Furthermore, a composed approach may determine whether 

unmatched recommendation should be suggested as newly created groups or ignored as poor 

groupings. Because we are the first to attempt such an approach, we chose only to identify which 

recommendations should match with previously existing groups and to ignore any groups that 

were not matched.  Future work may extend our work by determining which unmatched groups 

should be used to recommend the creation of new groups.  
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In general, there are four kinds of such matches: one-to-one, one-to-many, many-to-one, and 

many-to-many. In one-to-one mapping, each original named group matches with a single valid 

recommendation, and vice versa. In one-to-many, a single named group may be mapped to 

multiple valid recommendations, and in many-to-one, multiple original named groups map to 

one valid recommendation. Many-to-many is the most general case, combining many-to-one and 

one-to-many. Our work, as well as the example we have presented so far, focuses on one-to-one 

mappings. 

The challenge for us then was to separate valid recommendations from spurious 

recommendations and to map each valid recommendation to an original named group. To do so, 

our scheme must determine the closeness between the elements in the two sets of groups. This 

matching can be tied to action of performing diffs on files or folders. In diffs, files or folders are 

compared by determining what needs to be added or removed from one file to make it equal to 

another. Similarly, in the named group evolution case, the recommender is trying to find what 

needs to be added or removed from a result of the recommender engine to make it equal to an old 

named group. However, a diffing algorithm is given the previous and new versions of a file or 

folder, while in our case, we are given sets of old and new versions and must filter out spurious 

new versions and for each old version determine the new version.  

Therefore, we compare each of the old named groups with each of the recommendations to 

determine the recommendation that is closest to it, which we refer to as the valid 

recommendation of the named group. We use the following intuitions to determine if a 

recommendation, R, is valid for an original named group, G: 

1. R has the vast majority of the elements of G. 

2. R has few members of the original social graph that were not in G. 

3. The number of new individuals (individuals not in the old social graph) in R matches the 

growth of the social graph. 



 

172 

 

Based on these intuitions, we have defined a closeness metric, which is used in our 

algorithm. If closeness between a named group and a recommendation is not within a certain 

threshold, the recommendation is not an evolution of the named group. An iterative algorithm 

gradually increases this threshold until all original named groups have been mapped to valid 

recommendations or all recommendations have been mapped. In the rest of this section, we 

discuss this approach in more detail. 

To measure this closeness of a recommendation at time tk to an old named group from time 

tk-1, the composed change recommendation engine separates the recommendation into an old 

membership and a new membership, where old membership denotes members that were a part of 

the social network before time tk-1 and new members where those that joined the social network 

after time tk-1. Based on the intuitions discussed above, we do not expect the old membership to 

change, and therefore expect the optimal case to have 0 additions and 0 deletions when 

transforming the old membership of the recommendation to the old named group.  

In the case of new membership, the composed change recommendation engine expects the 

named group to grow similarly to the social graph. Therefore, if p is the ratio of new to old 

members in the social graph, we expect the number of new members in a valid recommendation 

to be p*|old named group|. 

Given these expected numerical values for each possible pair of old named groups and 

recommendations we have two vectors: vexpected = <0, 0, expected new members> and vactual = 

<adds, deletes, new members>. It is then possible to assign a numerical value for closeness by 

determining the Euclidean distance between the endpoints of the two vectors. 

To illustrate the computing of closeness, consider our running example. At some point 

between when the named groups were created (tk-1) and the current time (tk), Joe’s company 
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hired two new people, Greg and Hal, and Joe’s social graph grew by 1/3. Because of this overall 

growth, the composed change recommendation engine would expect Joe’s named groups to grow 

at the same rate, adding one new member – either Greg or Hal – each. Also in the case of our 

example, the recommender engine found the recommended named groups A={Alice, Eva, Frank, 

Greg}, B={Alice, Bob, Frank, Carol, Greg}, and C={Alice, Carol, Frank, Greg, and Hal} as 

illustrated in Figure 25(d). Because the old membership and new membership of A exactly 

matches the membership and expected growth of Research Group, respectively, the value of 

closeness(Research Group, A) is 0. On the other hand, because the old membership of B includes 

one more member than Social Group, closeness(Social Group, B) is 1. Moreover, because the old 

membership of C requires 1 addition and 1 deletion to reach Social Group and the new 

membership of C is 1 greater than the expected growth of Social Group, closeness(Social Group, 

C) is 3 . 

The next step was to appropriately define a threshold of closeness for matching old named 

groups to recommendations. With low thresholds, we found few, but precise, matches. In our 

running example, with a low threshold limit, the matcher is only able to match recommendation 

A to the Research Group, which means no evolution is recommended for the Social Group. In 

the case of high thresholds, we found a high number of matches, but many of these were 

incorrect or were not matched because they were not one-to-one mappings. For example, if we 

used high thresholds in the example in Figure 25, we may match A to Research Group and both 

B and C to Social Group. This means that not only is C matched despite the fact that it contains 

both Greg and Hal rather than just one of them, but the Social Group now has a one-to-many 

mapping, because it is matched to both B and C. This means again the composed change 

recommendation engine cannot recommend an evolution for Social Group.  
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Therefore, low thresholds tend to yield very few matches, but those matches tend to be 

correct. On the other hand, high thresholds yield many matches, but poor matches obscure good, 

one-to-one mappings provided by the low thresholds.  Intuitively, a good approach would select 

matches at different threshold levels.  In this way, the low threshold matches would be selected 

first, before they are obscured by high-threshold matches. Then matches with a higher threshold 

would be allowed to provide greater coverage for unmatched recommendations or old groups. 

 

To provide a multi-leveled approach, we developed an incremented threshold approach, 

which is illustrated in pseudocode in Figure 27. Initially the change recommendation engine 

starts with a closeness threshold of 0, meaning that a recommendation has to match an old named 

matchAndMerge(oldGroups, recommendations) { 

    recommend_evolutions = empty set 

    threshold  = 0 

    while len(oldGroups) > 0 && len(recommendations) > 0{ 

 

        forall oldGroup in oldGroups { 

            matchedVals = [] 

            forall recommendation in recommendations 

                c = closeness(oldGroup,recommendation) 

                if c <= threshold { 

                    matchedVals.append( 

                        recommendation 

                    )  

                } 

            } 

            if matchedVals.size() == 1 { 

                recommended_evolutions.add( 

                     merge(oldGroup, matchedVals[0]) 

                )  

                recommendation.remove( 

                    matchedVals[0]) 

                )  

                oldGroups.remove(oldGroup)  

            } 

        } 

        threshold += 1 

    } 

    return recommended_evolutions 

} 

Figure 27. Pseudocode for matching and merging old named groups and recommendations 
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group exactly in both old membership and expected growth. In the running example, this means 

Research Group and A would be the only match initially. For each match, if the old named group 

maps to a single valid recommendation the old group and recommendation are merged and added 

to our recommendations as a suggested evolution. This merging is done by adding the new 

members of the valid recommendation to the old named group. 

After the merging has been completed, the old named group and recommendation are 

removed from the pool of possible matches because they have already been mapped. In our 

example groups Research Group and A would be merged and removed from the pool. Following 

each stage of matching and merging the threshold is incremented by 1 and the matching and 

merging is performed again. Thus, with the threshold now 1, Social Group is matched to B (with 

a closeness of 1) but not C (with a closeness of 3 ). Since this too is a one-to-one mapping, 

Social Group and B are merged and removed from the pool. Since there are no more possible old 

named groups in the pool, the matching and merging completes without using C. 

Thus, this approach allows an increased threshold if a lower threshold will not appropriately 

recommend evolutions, but retains the one-to-one mappings that occur more abundantly in lower 

thresholds.  

5.3. EVALUATION  

Since this approach can be targeted at any system from which a social graph can be 

extracted, and since it was illustrated in section 4 that social graphs can be extracted from both 

email and communities systems, this approach can be used to evaluate systems in both the email 

and communities domains.  Moreover, since it depends only on a social graph, and makes no 

claims about the graph being explicitly or implicitly created, it is possible to evaluate this 

approach in systems with both types of graphs. 
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5.3.1. EVALUATION WITH EXPLICIT GRAPHS AND WITHOUT MESSAGE HISTORIES 

To evaluate evolution recommendations in explicit graphs, we had access to two different 

datasets with explicit graphs from Facebook: the data from the study conducted in Bacon & 

Dewan’s past work [14] and the data publicly released by SNAP [74]. Both datasets contain data 

about Facebook accounts, and both contain a social graph and ideal groups for each participant 

included in the dataset.   

Such systems are a good approach for initially evaluating our composable approach.  Recall 

that the foundation group recommendation approach which our composable approach uses is the 

Hybrid Clique Merger.  This foundational approach was originally targeted towards Facebook, 

from which both of our data sets contain information.  Moreover, the Hybrid Clique Merger 

algorithm was evaluated on the data from Bacon & Dewan [14]. 

Although these data sets contained information about ideal groups, neither data set contained 

messages or posts that users shared with each other. Therefore, there was data about the groups 

towards which users were intending to evolve, but not about how those groups are used in future 

posts or messages. Therefore, we could not evaluate these recommended evolutions in terms of 

usefulness in future messages.  Instead, we needed to use a different model to evaluate these 

recommendations.  Moreover, because we only had data about the social graph and ideal groups 

at one particular time, our new model would need to somehow simulate how the graph and 

groups change over time.  These changes in the graph and the old state of groups could be fed to 

the composed algorithm in order to generate change recommendations.  These recommendations 

could then be evaluated against the latest version of the named groups. 

We looked at these various alternative approaches to modeling future graph growth to see if 

we could apply any of these approaches to our own problem domain.  As mentioned previously 
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in section 2.4.2, there are many such approaches for such evolution.  For example, a method for 

modeling evolution of sensor networks randomly distributes nodes on a three-dimensional 

surface and forms edges between two nodes when those nodes are less than some minimum 

distance from each other [15].  This approach is not compatible with our domain as edges are not 

necessarily dependent on the Euclidean distance between the nodes they are connecting.. 

We also considered modeling using the previously mentioned power law, which states that 

the number of nodes with degree d is proportional to the value 1/d
α
 where α ≥ 0. Using this 

relationship, when a vertex is added to a graph at time t, it will connect to some existing vertex 

with probability dv,t/2et where dv,t is the degree of vertex v at time t and et is the number of edges  

in the graph at time t [16, 17]. However, smaller graphs have been shown to be more difficult to 

approximate with the power-law [17], and since our graphs are only one-hop sub-graphs of the 

global social graph, our graphs are not large enough to be appropriately modeled using the 

power-law. Moreover, upon analyzing our data sets, the social graphs for our users did not 

display an adherence to the power law. 

Because of the failure of these modeling techniques to map to our problem domain, we used 

a randomized approach to model past graph evolution. To model an evolution at time tk-1, we 

assumed there is a set of new members (Mnew,k) for our social graph at time tk (Sk)., where each 

of these new members will be added to the social graph after time tk-1. We can then subtract this 

new set of members from the social graph (Sk) and named groups at time tk (Gk) to find the 

respective Sk-1 and Gk-1. 

By modeling group growth in this way, it is possible to model the growth of the social graph 

between time tk-1 and tk and test different growth rates by adjusting the size of Mnew,k. 

Specifically, we modeled these growth rates as a proportion of the size of global social graph by 
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defining a vertex growth rate such that  𝑣𝑒𝑟𝑡𝑒𝑥 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 =
|𝑀𝑘,𝑛𝑒𝑤|

|𝑆𝑘|
 and varied this vertex 

growth rate over a wide range of values. We used vertex growth rate = 0.01, 0.02, 0.03, 0.04, 

0.05, 0.06, 0.07, 0.08, 0.09, 0.10, .15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.60, 0.70, 0.80, 

and 0.90.  Then the previous state of a group at time tk-1 were modeled by removing any 

members of that group that existed in the graph at time tk but not at time tk-1.  

This approach is limited in that it cannot model member deletion. Because we only have 

named groups and social graphs from a single time slice, our data does not give us any 

information of individuals that are currently missing from the Sk but were contained in some 

previous Sj where tj < tk. However, as mentioned previously, this is not a major issue for this 

experiment, as the match-and-merge change recommendation does not take deletion into 

account. 

The next issue is how to measure the user effort required to edit recommendations or named 

groups in this model. Recall that previously we measured effort as the number of relative 

additions or deletions required to match a recommended group to the collaborators in some 

message. Since the collaborators in a message are simply a group of individuals, we could use 

similar methods in this case. Therefore, for these explicit graph systems, we used ideal groups in 

the new state of the system as the target groups to evolve towards. 

To measure the cost we need to use our recommendations to evolve old groups to the ideal 

groups, we needed to model the cost users exerted when handling our recommendations. As in 

previous cases of converting recommended groups to target groups, we measured effort in terms 

of additions and deletions. Moreover, it was our goal to ensure that our approach was better than 

manually evolving groups.  Since our modeling is limited to the adding of individuals to graphs 

and groups, in the manual case users only need to add members to groups and never delete them.  



 

179 

 

Therefore, to directly measure the cost of an approach when compared to manual, we evaluated 

both the full recommendation approach and the composed change recommendation approach 

using deletions (the total number of individuals that must be deleted) and relative growth 

additions (the percent of evolutionary additions that must be made manually).   

Since the manual approach requires no deletions, if there are more than 0 deletions associated 

with an approach, it is worse than the manual in terms of deletions.  Since the user must perform 

all evolutionary additions manually in the manual case, if the relative growth additions are 

greater than 1, the approach is more costly than manual in terms of additions. 

5.3.1.1. RESULTS AND ANALYSIS 

Both data sets contained multiple accounts that could be evaluated. In the case of Bacon & 

Dewan’s data, there were 15 accounts.  In the SNAP data set, there were 10 data accounts.  For 

each account, we modeled the growth of each graph for each chosen vertex growth rate.  Then 

we reported the mean of relative growth additions and deletions across all accounts for each data 

sets at each growth rate.  These values for both the Bacon & Dewan data set and the SNAP data 

set are shown in Figure 28 and Figure 29, respectively.  Both show similar results for both 

relative growth additions and deletions. 

 In both cases, full recommendation required more than 1.0 relative additions for vertex 

growth rates less than 0.25, indicating it is more costly than manual for these low vertex growth 

rates.  However, as the vertex growth rate increased past 0.25, this relative addition cost 

decreased below 1.0.  Because we assumed the cost of additions is greater than that of deletions, 

and we accordingly ranked approaches first by additions then by deletions, we judged full 

recommendation to be better than manual in all cases except when the growth rate was below 

0.25.  In its best case, the relative additions were less than 0.25 (coincidentally the same as our 

previous growth rate threshold) or a 75% reduction over the cost of additions in the manual case. 
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Figure 28. Effort of evolution with data from Bacon & Dewan 

 

Figure 29. Effort of evolution with data from SNAP 

Also in both cases, the full recommendation approach required a constant number of 

deletions regardless of the vertex growth rate. This is because the full recommendation approach 

always generated a whole new set of groups from the same graph, which meant it always 

generated the same recommendations for the same ideal groups.  Therefore, these new group 

recommendations always required the same number of absolute deletions.  Moreover, these 

recommendations also required the same number of absolute additions. However, because this is 

divided by the number of new members to compute the relative growth additions metric, the 
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required relative growth additions for the full recommendation approach varied with different 

growth rates. 

In terms of the composed approach, both data sets showed a lower relative additions 

(deletions) value than full recommendation at a low growth rate.  At their best cases, we found a 

significant improvement over full recommendation in terms of additions.  In the Bacon & Dewan 

data set, the required relative additions were reduced by over 97%, and, in the SNAP dataset, the 

required relative additions were reduced by over 65%.  Then, as the growth rate increases, the 

composed approach requires more or the same amount of additions (deletions).  The point at 

which the composed approach costs more than the full recommendation approach varies based 

both on the data set used to conduct experiments and whether we are evaluating additions or 

deletions. 

In the case of the Bacon & Dewan data set, the composed approach does not cost less than 

the full recommendation approach in terms of relative growth additions when the growth rate is 

greater than 0.5.  Deletions cost more or roughly the same when the growth rate was higher, or 

above approximately 0.6.  As discussed previously in the discussion of foundational 

recommendations, we assumed additions to be more costly than deletions.  Therefore, we judged 

that the composed approach is less costly than the full recommendation when the growth rate is 

below 0.5.  Moreover, we also judged the composed approach better than manual for these 

growth rates.  Even though it requires a non-zero number of deletions, the number of additions is 

significantly lower than 1 (less than 0.2 in the best case).   

In the case of the SNAP data set, we also observed a difference in the point at which the cost 

of the composed approach exceeded or was equal to the cost of full recommendation. For relative 

growth additions, this occurred when the growth rate was ≥  0.6.  For deletions, this was when 
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the growth rate was ≥ 0.5.  However, interestingly, in the SNAP dataset, the mean deletions for 

the composed approach was never observed to significantly exceed those required for full 

recommendation.  In its worst case, the composed approach required the same mean deletions as 

the full recommendation approach. Therefore, we judged the composed approach to be better 

than full recommendation when the growth rate was < 0.6, because it required fewer relative 

growth additions and the same or fewer deletions. 

In the SNAP dataset, we noticed a difference in when composed outperformed manual. 

Instead of composed always requiring less than 1 relative growth additions, it only required less 

than one when the growth rate was ≥ 0.2.  Based on this finding, we judged the composed 

approach to be better than manual only when the growth rate was greater than 0.2.  

Interestingly, the point at which composed becomes more costly than the full 

recommendation approach may be explained in both data sets by the type of evolution that 

occurs in groups.  As the graph grows from time tk-1 to time tk, groups can evolve in three ways: 

(1) groups can remain unchanged  by not adding any members, (2) groups can evolve by adding 

some but not all members are newly added to the social graph between time tk-1 and tk, or  (3) 

groups can be newly created if all of their members are added to the social graph between time tk-

1 and tk. We measured what portion of groups fell into each of these categories, and reported 

them in Figure 30. 
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(a) Data from Bacon & Dewan 

 

(b) Data from SNAP 

Figure 30. How groups change in explicit graphs 

As the figure indicates, the Bacon & Dewan data showed a decreasing number of evolved 

groups after the growth rate exceeded 0.5, and the number of newly created groups exceeded the 

number of unchanged groups at the same point.  Similarly, only when the growth rate exceeded 

0.6 in the SNAP dataset did the number of evolved groups start decreasing and did the number of 

newly created groups exceed the number of unchanged groups.   Both of these growth rate values 

match the thresholds at which we judged the full recommendation to perform better than the 

composed approach.  
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Intuitively, this is likely because the number of new groups is so large that it outweighs the 

benefits of the composed approach.  Recall that the composed approach does not create new 

groups, only evolves existing groups, but the full recommendation approach can create new 

groups because it replaces all groups with a new set of groups.  If a group still exists in the past, 

the composed approach is more beneficial, because it retains the name of the old group and only 

recommends updates to its members.  On the other hand, if the group did not exist in the past, the 

composed approach will not recommend anything about that group, but the full recommendation 

approach will recommend groups that users must name and edit. 

5.3.2. EVALUATION WITH IMPLICIT GRAPHS AND MESSAGE HISTORIES 

Given the success of our composed approach, we also wanted to evaluate its effectiveness on 

implicit graphs, such as those generated from email, Usenet, or Stack Overflow data.  However, 

such an evaluation could not be done using the same methodology used for evaluating explicit 

graphs. 

As mentioned previously in section 4, we had access to three data sets which we had used to 

generate implicit graphs. These data sets only had messages in which groups might be used and 

not ideal groups that users wanted to create.  Therefore, it was not possible measure how users 

would edit any recommended evolutions presented to them. 

Instead, we needed to develop a different evaluation approach with certain goals.  Namely, 

we needed to separate messages into three set of groups: (1) a set of older messages that are used 

to generate an older social graph, (2) a set of newer messages that, together with the set of older 

messages, would be able to generate a new social graph, and (3) a set of test messages against 

which to evaluate our evolution recommendations.  With these three groups, we could then 

recommend groups in the old social graph, and recommend evolutions to these groups based on 
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the new social graph, and compare the use of the old groups and their evolutions in the test 

messages. 

To separate messages into these three groups, we used and an approach similar to the bursty 

model, which is shown in Figure 31.  In this experimental design, we would allocate the last 20% 

of all messages as the set of test messages. Then, as in the bursty evaluation, the remaining 

training messages would be divided into two parts.  The first portion the training messages, 

(called “old training messages” in the figure) would be made up of the first n% of the training 

messages.  This first portion would serve as the set of older messages that would be used to 

generate the old social graph. The second portion (called “new training messages” in the figure) 

would be made up of the last (100-n)% of training messages.  This second portion would serve as 

the set of new messages that would be used with the first portion to generate the new graph.  The 

value n could be then adjusted to allow for different vertex growth rates of the social graph. The 

smaller the value of n, the larger the number of new training messages in relation to old ones.  

This larger “new training messages” is the more likely the social graph has grown by a larger 

amount in this period.  

 

Figure 31. Division of messages for evolution experiments 
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Using these old training messages, it was possible to generate a set of old groups using a 

previously used foundational recommendation approach. Recommendations for how these old 

groups should evolve could be generated using old graph and new graph generated from the two 

different portions of the training messages as described above. 

We could then evaluate these evolution recommendations against the messages in the test 

messages.  However, in order to perform this evaluation, we needed to identify some metrics to 

measure user effort to compare this new approach against a foundational approach or an 

approach with no recommendations.  

Therefore, the next question is what metrics should be used to evaluate effort. Because there 

is no set of ideal groups toward which we can assume users are evolving, it is not possible to 

map each change recommendation to an ideal group to which the recommendations should be 

edited to mach. This means it is not possible to use a model where users edit recommendations as 

they are presented but before they are used in messages, just as in the evaluation of foundational 

approaches. 

Instead, it is possible to assume a model similar to the one previously used to evaluate 

foundational named group recommendations in sections 4.3.3, 4.4.3, and 4.5.2. As a reminder of 

the model, users are assumed to only name or reject recommended groups, each of which takes 

effort. Then, future messages may use one of these recommended groups that are not rejected if 

there is at least one named group where a user is not required to add all recipients in the message 

or remove all members of the named group. The effort for a message can then be measured as 

the lowest editing cost to use a group in a message. This editing cost was reported as the 

percentage of a group’s members that must be deleted and the number of the messages recipients 
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that must be added manually. These values can then be averaged across messages to give mean 

editing costs per message. 

It is possible to apply this same idea to change recommendations, where effort is measured as 

the how often users must reject or accept recommendations and the cost to edit groups as they 

are used in messages. However, the evaluation of change recommendations requires some 

modifications to the model used in foundational recommendations. Specifically, these 

modifications occur in the portion of the model where users handle new change 

recommendations. Change recommendations, unlike foundational ones, recommend which 

members should be added to an existing named group. Since these groups already have names, 

there is no cost in this model to name groups. Moreover, the rejection of a change 

recommendation does not imply that a group is not used. Instead, this rejection indicates that the 

group should not be changed and should remain in its previous state. 

Therefore, the evaluation model and its metrics will take into account these differences for 

change recommendations.  For approaches that make change recommendations, the model will 

first assume the user went through the original process to name or reject groups generated from 

foundational recommendations based on the training messages.  This effort is measured in the 

same way as in previous foundational experiments. 

Then effort for handling evolution recommendations is measured as the percentage of those 

recommendations that are rejected.  For consistency with past foundation recommendation 

evaluations, a recommendation is rejected if there is not at least one future message where the 

member would not need to delete all members of the group or add all recipients to the message.  

An acceptance means the old group is transformed based on the recommendation, and a rejection 

implies the old group is retained, but not transformed. The relative additions, relative deletions, 
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and perfect match rate metrics can then measure the effort required to address each test message 

using only the existing and possibly transformed groups. 

To model different evolutionary rates, n was varied to achieve different rates at which the 

number of members in the graph increased d.  Specifically, this was varied to test when the 

number of members increased by 1-100%.  This allowed the analysis of the relative 

improvement as the growth rate of the graph changed. 

5.3.2.1. RESULTS AND ANALYSIS 

5.3.2.1.1. Email 

The results of testing this using the data from the study described in section 4.3.3.1 are 

shown in Figure 32.  As Figure 32 (a) and (b) indicate, there was no effective difference in the 

acceptance rate or perfect match rate between the full recommendation and composed 

approaches to group evolutions. 
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Figure 32. Evolution results in email 
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additions and deletions, though we observed changes in these variations, the magnitude of these 

variations remained small.  In fact the variation between the results for full recommendation and 

compose approaches were so small that we were unable to effectively show that the values were 

different with p < 0.05. 

Recall that the composed approach, because it is a change recommendation approach, 

preserves names users assigned to groups.  On the other hand, the full recommendation 

approach, because it replaces all groups with a new set of groups, requires that users exert effort 

to assign new names to all accepted groups, whether that groups was previously named or not.  

Given that all other metrics could not be determined as significantly different, we then claim that 

the full recommendation requires more effort than the composed one.  With all other forms of 

effort being equal, these two approaches appear to only differ in the cost of naming groups, 

which is 0 for the compose approach and non-zero for the foundational one.  

Moreover, since all relative values were less than 1, we claim that that the composed 

approach requires less effort than manual, because it requires less effort to address future 

messages than if they had been addressed manually. 

However, the full recommendation approach appears to always require less than 1.0 relative 

additions and 1.0 relative deletions.  This indicates that full recommendation requires less effort 

than manual evolution in all cases, regardless of vertex growth rate. 

5.3.2.1.2. Usenet 

We also evaluated this composed approach in Usenet using the same approach on the 20 

Newsgroups data set. These results are shown in Figure 33.  
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Figure 33. Evolution results in Usenet 

 

The results were similar to those seen in email.  Both the acceptance rate and the perfect 

match rate were so close in the full recommendation and composed approaches that they were 

effectively the same (Figure 33 (a) and (b)). Relative additions also showed a systematic increase 

in variation between the two approaches, with the composed approach requiring more relative 
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observed in relative deletion results from the two different approaches, but this variation did not 

appear to show a pattern with respect to the vertex growth rate (Figure 33 (d)). As mentioned 
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previously, such similarity between results is not particularly surprising since, as mentioned 

previously, Usenet and Email are likely addressed similarly, because they use the same message 

format. 

Unlike the email tests, the composed and full recommendation approaches yielded relative 

additions and deletions that were sometimes significantly different than each other’s according to 

Student t-Test. Our results indicated that the composed approach required fewer relative 

deletions with p < 0.05 when the growth rate was between 0.10 and 0.70, inclusive. Conversely, 

however, the composed approach was shown to always require more relative additions than full 

recommendation with p < 0.05.  Since we assume that the additions require more effort than 

deletions, we therefore cannot assume that the composed approach is better than full 

recommendation in Usenet.  It is possible that the benefits of retaining of previous group names 

with the composed approach may outweigh the additional additions it requires. However, our 

metrics do not capture the cost of naming groups, and therefore we leave it to future work to 

make such evaluations about Usenet.  

Despite this inability to show our composed approach as better than full recommendation, the 

results indicate that full recommendation is better than manual, just as in the email results.  Full 

recommendation always yielded relative and deletions that were less than manual with a p < 0.05 

and an FDR rate of 0.05. Therefore, we conclude that full recommendation was better than 

manual for group evolution with vertex growth rates greater than 0 and less than or equal to 1.0 

in Usenet. 
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5.3.2.1.3. Stack Overflow 

Finally, we evaluated the composed approach for predicting evolutions for named groups of 

tags in Stack Overflow using the Stack Overflow portion of the Stack Exchange public data 

dump.  The results of these experiments are shown in Figure 34. 

As in previous results with email or Usenet data, both the composed and full 

recommendation approaches yielded similar values for the acceptance rate and perfect match 

rate, as illustrated in Figure 34(a)  and Figure 34(b).  Like the Usenet results, relative deletions 

showed some slight decrease in the composed approach, but, again like the Usenet results, this 

variation showed no discernable pattern with respect to vertex growth rate as displayed in Figure 

34(d).  More specifically, all relative deletion values in these results fell within the range 0.885 

to 0.895.   
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Figure 34. Evolution results in Stack Overflow 

Like in Usenet, the composed approach required more relative additions than the full 

recommendation approach as illustrated in Figure 34(c).  Moreover, t-tests confirmed this 

difference in costs with p < 0.05 and a FDR rate of 0.05. 

As before, because we assume that additions require more effort than deletions, we cannot 

assume that the composed approach is better than full recommendation in Stack Overflow.  As 

before, the benefits of retaining group names may outweigh these costs, but we have not 

specifically tested this tradeoff.  Therefore, we cannot claim such an effect. 
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However, just as in email and Usenet, the full recommendation approach always yielded 

better results than manual in terms of relative additions and deletions with p < 0.05 and an FDR 

of 0.05.  Therefore, we judged full recommendation to be better than manual for all vertex 

growth rates in Stack Overflow. 

 

5.4. CONCLUSION  

Through this work in evolutionary named group recommendations, we have made multiple 

contributions.  First of all, we have developed a design space of how ego graphs may evolve and 

a design space of approaches for evolving groups based on these changes in the graph. 

Specifically, we identified that ego graphs can evolve by adding members, removing members, 

or changing connections between existing members.  We also identified three categories of 

approaches for evolving groups: manual, full recommendation, and change recommendation. 

This design space allows an easier comparison of past approaches and determination of which 

areas may be explored in future work.  

We have also identified a way to leverage existing work on full recommendation to support 

change recommendation.  We have performed comparisons of this new approach with the full 

recommendation and manual approaches.  The results of these comparisons differed significantly 

based on whether the social graph that was used to generate groups was explicit or implicit.  

When evaluated with explicit graphs, our results show that the full recommendation approach 

outperforms the manual approach in explicit graph by reducing the number of required additions 

and deletions in all but the smallest of social graph growths (< 0.25 vertex growth rate). We have 

also shown that change recommendation outperforms manual by reducing the cost of additions in 

most cases for two different data sets of explicit graphs. Furthermore, change recommendation 

outperforms full recommendation in terms of additions by over 95% in our best case.   
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Being a first-cut approach to named group evolution, our approach has several drawbacks 

even in the case of explicit graphs, where they showed success over both manual and full 

recommendation approaches. The benefits drop as the relative growth of the social graph 

increases. This means that for high levels of growth where the number of new groups exceeds 

the number of unchanged groups, which corresponded to when 50-60% of the graph was made of 

new members in our data sets, it may still be more effective to use past approaches to generate a 

whole new set of recommended groups rather than recommend evolutions.  

Thus, we can state this as the following sub-thesis: 

 

When evaluated with implicit graphs, our results show that the full recommendation 

approach outperforms the manual approach regardless of the growth rate of the social graph.  We 

have also shown that our change recommendation outperforms manual by reducing the cost of 

additions in most cases for three different data sets of implicit graphs.  However, change 

recommendation never outperformed full recommendation with statistical significance. Thus we 

can state this as the following sub-thesis: 

Sub-Thesis V: Sub-Thesis V: Explicit Graph Named Group Evolution Recommendations 

It is possible to develop a change recommendation approach for named groups from explicit 

graphs that automatically predicts which groups need change recommendation, such that 

editing and use of the recommendations will require less effort in terms of additions and 

deletions than predictions from a full recommendation approach or if no recommendations 

occurred at all when the number of unchanged groups exceeds the number of newly created 

groups. 
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Of course, our results have several limitations. We have restricted our recommendations to 

named group growth and matches to be one-to-one mappings between past named groups and 

recommendations. With these restrictions, we are unable to offer recommendations in cases 

where a new group should be created, a named group should lose members, a single named 

group should evolve into multiple named groups, or where multiple named groups need to be 

merged into a single named group. 

We have chosen a composed approach which finds foundational recommendations based on 

structures in the social graph and then matches those recommendations to existing groups. It may 

be possible to increase precision by integrating these steps.  

We have also limited ourselves to a connection-based clustering because it can be applied to 

a much larger number of social networks than a property-based approach. However, a property-

based approach may offer more precision, provided it can appropriately handle issues of access 

rights and privacy control. 

We have only addressed evolutions in terms of the membership of named groups.  It may be 

possible to evolve other properties of named groups, such as associated names or access rights.  

Future work could address how to evolve such properties as the social graph and named groups 

change.  For example, a system may make recommended changes both in terms of (a) whether 

Sub-Thesis VI: Implicit Graph Named Group Evolution Recommendations 

A full recommendation can require less effort in terms of additions and deletions than a 

manual approach for evolving named groups from implicit graphs, regardless of the growth 

rate of the graph.  However, it is not clear that our composable approach can perform better 

than the full recommendation one, regardless of the growth rate of the graph. 
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other individuals can see a user’s outgoing information and (b) how a user filters incoming 

information. 

As mentioned previously in section 2.1, systems other than those in the email or communities 

domains allow the association of rights with groups.  For example, the access matrix allows the 

specification of rights for groups of subjects rather than subjects, and a role in RBAC is a named 

group of users bound to some rights.  If these systems evolve, it is likely that the members of 

roles or subject groups will also evolve.  It is therefore possible that our evolutionary approaches 

are applicable in such systems to keep the members of such groups up to date.  Moreover, other 

work in these areas has identified methods for automatically evolving roles to a more optimal 

state, which includes the reassignment of rights [19].  Future work could reduce the conceptual 

gap between these fields to gain benefits of cross fertilization. 

Our work provides a basis for investigating these unresolved issues in recommended named 

group evolutions and to apply evolution techniques to other systems using named groups. 
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6. HIERARCHICAL RECIPIENT RECOMMENDATION 

There are many cases where persistent named groups may not be effective in sharing.  A 

message may be addressed to some ephemeral group whose members did not exist previously, 

and therefore, the group could not exist previously.  Moreover, because such groups are not tied 

to use as an ephemeral group of recipients for a particular message, users may not view the effort 

necessary to create or maintain such groups as worthwhile. Such judgment may be based on 

users determining the effort to create groups outweighs their benefit, or users being unaware of 

when groups would be useful in the future. 

Therefore, when addressing a particular message, there are many cases where a relevant 

group does not exist or all relevant groups are stale. Even if such relevant groups are available 

and up to date, there may be many named groups from which to choose, which would mean that 

selecting a named group to share with requires a high level of effort per message.   
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Some past work has addressed this issue by generating recommendations to create these 

ephemeral groups of recipients through the generation of ad-hoc unnamed lists of recommended 

users based on previously specified recipients of a message [31,91,104], such as those shown in 

Figure 35(c). These recommendation lists are ad-hoc and late-binding because they are made and 

handled as the user specifies how a piece of information should be shared.  In comparison, 

named group recommendations are early binding because they are made and handled before 

users specify how to share any piece of information, and are meant to allow the same group to be 

reused in many future unknown sharing actions.  

Recipient prediction through ad-hoc lists is a special case of both group prediction and token 

prediction.  Like named-group recommendation, recipient recommendation automatically 

clusters individual recipient into social groups based on characteristics they share. The difference 

between ephemeral recipient prediction and persistent named group prediction is that the former 

predicts a group of users who should receive a specific message based on the properties of the 

message, while the latter identifies multiple groups of users based on general relationships 

(a) Gmail (b) Eclipse 

Token Completion: Recommending current token 

(c) Gmail (d) Eclipse 

Token Prediction: Recommending the next token 

Figure 35. Token Completion vs. Prediction 
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among the users, such as whether two users are “friends” in a social network [15,45] or if they 

have sent a certain number of messages to each other [69]. 

Recipients are special cases of tokens, where tokens are string sequences delimited by 

whitespace and special separator characters that users must enter manually. To aid the entry of 

such text, some of these interfaces provide token completion and prediction, illustrated in Figure 

1. Token completion recommends a set of choices that complete the current token based on the 

prefix entered by the user. In Figure 35(a) and (b), the Gmail and Eclipse user-interfaces provide 

lists of recommendations based on the token prefixes ‘nav’ and ‘a’, respectively. Token 

prediction, on the other hand, recommends one or more future tokens based on the tokens 

entered so far. In Figure 35(c) and (d), the Gmail and Eclipse user-interfaces recommend tokens 

which represent additional recipients to whom a message should be addressed and alternative 

valid method calls, respectively.  

By grouping candidate recipients and suggesting rather than completing tokens, recipient 

prediction has several potential advantages. It saves the user effort when entering long IDs of 

recipients, such as email addresses or user names. Moreover, it allows the user to find recipients 

whose ids they cannot recall, which is particularly likely with listserv groups, long email 

addresses, or large collections of possible recipients. In this case, the sender knows who should 

receive the message but cannot remember their ID. Recipient prediction can also allow the 

sender to be reminded of forgotten recipients who should receive the email [31]. This is an 

important use of such predictions, as missing a recipient can be costly for senders, missed 

receivers, and others. Finally, it can prevent leakage of information to unintended recipients. 
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The importance of identifying forgotten recipients and information leakage was recently 

illustrated in a class taught in Fall 2011 at UNC by my advisor. Students in the class sent the 

instructor emails that should have also gone to his teaching assistants, resulting in unnecessary 

forwards or missed requests. Perhaps even more alarming, solutions to five of the twelve 

assignments, and reports of personal issues, were mailed accidentally by different students to the 

whole class rather than to the instructors, because the students confused the class-help listserv 

(comp401-help) with the class listserv (comp401). These are not isolated problems. A CMU 

study by Carvalho et al of a recipient prediction email tool found that at least 9.27% of emails 

did not include a desired recipient [30]. With accurate and effective recipient predictions, users 

could be reminded of the correct recipient and, thus, not fall prey to such issues. These potential 

benefits could have a significant impact given the popularity of email and recent research 

advocating the use of email as the primary collaboration user interface [23].  

Therefore, given their potential it we sought to analyze and potentially improve upon past 

approaches to recipient prediction.  Namely, we sought to answer several new, interesting 

questions about recipient recommendations: 

1. Dimensionalized design space: Can we identify a design space of recipient prediction 

algorithms that includes existing schemes? Such a space can lead to more effective email 

prediction by including previously unexplored subspaces. Moreover, its dimensions can be 

used to succinctly compare and contrast existing and new algorithms, leading to a better 

understanding of them for use in new scenarios and possible combinations of approaches 

from different spaces.  

2. Hierarchical prediction: Previous approaches predict a flat list of recipients, requiring 

individual recipients to be selected, one at a time. Is it possible to predict a hierarchical tree 
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of recipients to allow users to atomically select groups of recipients? Hierarchical prediction 

can potentially reduce the overall user effort in selecting predictions. Each time a prediction 

is made, users must make some effort to determine whether the generated prediction is 

correct and either accept the prediction or perform some rejection action, which usually 

consists of manually entering some other recipient. Accepting a group rather than an 

individual reduces the number of times a user has to process and accept or reject a prediction. 

On the other hand, based on how it is implemented, it can potentially also increase the overall 

effort as predictions of groups are riskier than those of individuals, and, thus, can lead to 

more rejections. Instead, could hierarchical recipient prediction be made composable with 

flat approaches, such that the recommendations from previous, successful flat approaches are 

grouped to retain the benefits of flat approaches while adding the benefits of grouping 

individuals? 

3. Comparison: Hierarchical prediction adds an important new dimension to the design space 

mentioned above. How do various points in the prediction design space compare with each 

other? In particular, how do group-based and content-based approaches compare with each 

other and with a hybrid approach that combines the two; and how does individual prediction 

compare with the hierarchical prediction?   

4. Cross-Application: Hierarchical prediction may prove to be successful in assisting with email 

recipient prediction.  Would this prove true for other systems that also require the addressing 

of recipients, such as Usenet or Stack Overflow? 

We answer these questions in several stages. We start by describing dimensions that describe 

the existing algorithms. Next, we motivate and define action-based metrics for evaluating the 

effectiveness of recipient prediction, which are then used to compare the existing schemes in 
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email. This comparison is used to motivate a new algorithm for predicting individuals and sets of 

individuals. The new algorithm is then compared with the existing ones using both classical 

metrics and action-based metrics in email. The best of the algorithms are then used to further 

improve recipient prediction by extending any individual recipient prediction to support 

hierarchical prediction, which is then evaluated in email. Finally, we test the ability to cross-

apply this hierarchical prediction approach in other systems by using the same metrics to 

evaluate its usefulness in Usenet and Stack Overflow.  

A running example is used to illustrate the similarities and differences among these schemes 

and motivate them, which is a contribution in its own right. 

6.1.  DESIGN SPACE TO DESCRIBE CURRENT SCHEMES 

In our ad-hoc recipient recommendation, individual recipients or groups are associated with 

some set of past email messages, and properties of these sets are used to determine the likelihood 

of a correct prediction. This model is illustrated by Figure 36 and Figure 37, which are used as 

our running example throughout this chapter. Figure 36 lists the past messages of an email 

account belonging to the user Chris, some of which occurred in Fall 2011 and some of which 

occurred in Spring 2012. The Fall 2011 messages were addressed to the same receivers but had 

different content. The Spring 2012 messages were addressed to three different groups of 

recipients, some of which overlap with previous groups. 
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Figure 37 specifies a message that the user Chris composed in Spring 2012. In this newly 

composed message, Chris has already addressed Albert, one of the recipients of a previous 

message, and is now asking for predictions of other possible recipients. 

 

As previously described in Chapter 2 on related work, past schemes for email recipient 

prediction can be classified into two categories, groups [91] and content [31].  A group-based 

algorithm bases its predictions on the set of recipients in the current message and in each 

previous message. Likely predictions are then identified by similarities between the set 

corresponding to the current message and all sets corresponding to past messages. For example, 

consider messages (a) and (b) in Figure 36, where Chris sent two messages to Albert and Eddie.  

Since the two users were addressed together in the past, and Albert has already been addressed in 

Figure 37, Eddie is a likely predicted recipient for the current message. As this example 

Fall 

2011 

(a) 

From: 

To: 

Subject: 

Chris 

Albert, Eddie 

Study group 

tonight at 7pm 

(b) 

From: 

To: 

Subject: 

 

Chris 

Albert, Eddie 

Our presentation 

for class 

Spring 

2012 

(c) 

From: 

To: 

Subject: 

 

Chris 

Albert, George, Sue 

Let’s make a study 

group 

(d) 

From: 

To: 

Subject: 

 

Chris 

Albert, Eddie, George 

Lunch normal time 

and place 

(e) 

From: 

To: 

Subject: 

 

no_reply 

Chris 

FREE 

OFFER!!!! 

Figure 36. Sample email message history 

From: 

To: 

Subject: 

 

Chris 

Albert 

Homework Question 

Figure 37. Example message in need of recipient prediction 
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illustrates, group-based prediction looks at both groups of users addressed in previous messages 

and the seed set of users addressed so far in the current message, either by manual entry or 

prediction selection. 

However, as one can see by looking across all messages in Figure 36, email accounts are not 

this simple. Groups can overlap, which can lead to users being members of multiple groups at the 

same time. Therefore, predictions need to be ranked in some form. Such rankings use the 

SOYLENT [41] idea that (a) the rank of a group is proportional to the strength of the 

connections between its members;  and (b) the connection strength can be derived using various 

properties of email exchanges. Two such properties used in past work are time and direction. 

Time captures the change of groups. For example, consider the messages (a) and (c) in Figure 

36. The user, Chris, changes classes from semester to semester, and thus his old group of (Albert, 

Eddie), should be made less important than a new group of (Albert, George, Sue) as time passes. 

Direction captures whether the owner of an email account implicitly created a group by 

sending a message to others, or whether some outside source made this specification by sending 

the message to the owner. When the owner of the account sends an email to a set of recipients, it 

is reasonable to assume that those individual recipients have some sort of association. However, 

if the message was received, it is more difficult to make that assumption as the sent message may 

have incorrectly been sent to the owner, the message may be spam (Figure 36(e)), or the sender 

may not be able to receive messages (Figure 36(e)). 

Originally, we had observed a link between recipient prediction for a current message and the 

seed of the current message, groups in past messages that are supersets of the seed, time of past 

messages, and direction of past messages.  Our goal was to develop a successful approach for 

combining these features into a successful recipient prediction approach.  However, in parallel to 
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our own work, researchers from Google (Roth et al. [91]) were working on the same problem, 

and published their own approach before we could develop and publish our own approach.  This 

Google algorithm is currently actively used in Gmail at the time of writing. It works in two 

stages. First, it assigns a weight to each group based on the four properties of seed, groups, time, 

and direction. Then, from these group weights, it determines the individual weight. 

To explain this in more detail, let us first consider group weight, which is a function of 

several individual weights corresponding to the four properties. Each group g is initially given a 

base score based on the messages that contain all of that groups members.  This base score is 

computed using the previously described information recall (IR) score from section 4.3.1.3. As a 

reminder, this score uses a 𝑤𝑜𝑢𝑡 parameter to assign importance to sent messages and uses the 

standard half-life formula to treat older messages as exponentially less important based on a half-

life parameter. 

The impact of the seed is then determined using the intersection of the group with the seed. 

The Roth et al. [91] paper identified four alternatives for calculating the weight of a group based 

on these three properties, which define a space of group-based schemes.  

1. Top Score - The seed is ignored, and the group weight is the IR score for that group. 

2. Intersection Count - If the intersection is non-empty, then the group weight is calculated 

as 1, and if not, it is calculated as zero. Thus, in this approach, direction and time are 

ignored. 

3. Intersection Score - If the intersection is non-empty, then the score is IR score for that 

group; otherwise, it is zero. 
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4. Intersection Weighted Score - The group weight is the size of the intersection multiplied 

by the IR score.  

An individual, i, has a set of groups G, of which it is a member. Therefore, the scores of 

individual recipients were computed by the summing of group scores, which can be shown as the 

following equation:  

.)( Gg
gscore  

Thus, as we see above, group-based prediction, as implemented by Roth et al, in fact uses 

four different properties of email: group, seed, time, and direction. One property it does not use 

is the content of the email. Carvalho and Cohen [91] use a combination of content and direction 

of the email. As mentioned previously in section 2.5.12.5.1, the intuition behind this scheme is 

that people tend to receive or send email of “similar” content. We illustrate this intuition with 

messages (c) and (d) in Figure 36. Chris has two groups he emails. One is for a class study 

group, and one is for a lunch group. If it is a particularly difficult class, he may be sending and 

receiving emails a few times a week, and, in the case of the lunch group, he eats on a regular 

basis. Therefore time and direction offer no help in differentiating between the two groups. 

However, if one were to examine the content of the two emails, one could find that these emails 

are very different from each other. 

In order to effectively use content for prediction making, an email prediction scheme must 

define the similarity between two messages. The algorithm in [30] is based on the TF-IDF (Term 

Frequency-Inverse Document Frequency) text mining technique [93]. Given a set of documents, 

TF-IDF first computes a list of words or terms, t1...tn, that occur in these documents. Then, given 

a specific document, it calculates a tf-idf weight vector, w1..wn, where wi is the weight of term ti 
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in that document.   (The specifics of computing TF-IDF weights are discussed in section 2.5.1 in 

the chapter on related work.)  

Carvalho and Cohen compute TF-IDF based on all but a small subset of ignored words, 

which we replicate in our evaluation, described later. Their scheme treats each message as a 

document, and, thus, associates each email with a weight vector, w1..wn. As in group-based 

predictions, each possible prediction is associated with a set of past email messages, E. A weight 

vector, W1..Wn, is then formed for each prediction by summing together the weight vectors for 

all messages in E. 

After a new message is composed, there exists a weight vector for each possible recipient and 

the newly composed message. The likelihood of a particular prediction, p, is then calculated as 

the cosine of the angle between the vector for that prediction, vp, and the vector for the new 

message, vm. The cosine can be computed with the following equation, where vp • vm is the dot 

product between the two vectors: 

mp

mp

vv

vv
pscore


)(  

Based on this equation, each prediction has a score, just as it did in the group-based case, 

where a higher score indicates a more likely prediction. 

Thus, we see two different ways of predicting recipients. While there has been study within 

the categories of group and content-based predictions, no work has been done to compare the 

two spaces with each other. Such a comparison requires appropriate evaluation metrics. 
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6.2. METRICS 

As mentioned above, past work has measured the effectiveness of predictions through the 

classic metrics of precision (P) and recall (R). However, these two metrics only determine the 

correctness of predictions - they do not directly measure how a user’s effort is reduced. This is 

due to two fundamental differences between classic prediction systems and recipient prediction. 

In the latter, the prediction step is followed by a user acceptance or rejection of a prediction, 

which, in turn, implies that the user knows if a prediction is correct or not. Thus, the cost of a 

false positive (predicting an unintended recipient) incurs the additional effort required to reject it, 

and not a wrong user conclusion such as a wrong medical diagnosis. Second, as we see in the 

group-based scheme, predictions can be made incrementally, based on past user actions. 

 A false negative (not predicting an intended recipient) can indeed lead to a wrong 

conclusion, as a user may forget an intended recipient because the system has predicted that no 

more recipients are necessary. Thus, the classic metrics remain relevant. However, additional 

metrics are needed to more directly measure the reduction in user effort. 

In order to better measure the effort required during the prediction process, we first had to 

identify a model of how predictions are generated, accepted, and rejected. In our new model, 

predictions are generated as a list of items, where an item may be an individual recipient or a 

(potentially hierarchical) group. For a non-empty top-level list, a user may select an individual or 

a group, or reject all predictions in the list. If a list is empty or the user has rejected all 

predictions in a list, a user must manually enter some recipient and then ask for a new prediction 

list. The maximum number of leaf nodes in a predicted list is kept constant in each prediction 

because of limited screen space available to display such lists. 
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The classical P and R metrics can be used to measure certain aspects of this process. An 

empty list corresponds to a false-negative, because there are recipients still left to address, but 

the algorithm can find no predictions. By measuring the ratio of non-empty lists (positives) to 

total requests for lists (candidates), R determines the degree of false negatives. By computing the 

ratio of lists that contain a correct prediction (correct positive) to the total number of non-empty 

lists generated, P determines the degree of false positives. The higher the P or R value, the lower 

the degree of false negatives/positives.  

In order to compute our action-based metrics from P and R, we introduce another new 

metric, average acceptance size, which we denote with the variable A. It measures the average 

number of individuals chosen when a user accepts some prediction from a particular list. In an 

algorithm that only predicts individuals, this average acceptance size is 1. However, if groups are 

made available as predictions, then this average acceptance size can be larger, because a single 

user action can accept multiple recipients. 

A higher value of A reduces the number of clicks (selections) made by users to select 

predicted lists. However, making a click is not the only way users exert effort in an email system 

supporting recipient prediction. They must also scan the recipients in the prediction lists and 

manually enter recipients. To determine the cost of these three kinds of user efforts in an email 

that is addressed to X recipients, we use the variables s, c, and m, respectively, to denote the 

number of non-empty lists scanned by the user, the number of clicks made, and the number of 

recipients entered manually.  

 The values of the variables P, R, A, X, s, c, and m are related to each other by the following 

system of equations: 

(1) 𝐴 ∙ 𝑐 + 𝑚 = 𝑋 
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(2) 𝑠 = 𝑅 ∙ (𝑐 + 𝑚) 

(3) 𝑐 = 𝑃 ∙ 𝑠 

Equation (1) says that the total number of recipients, X, is the sum of the number, m, 

manually entered, and the number, cA , selected through c clicks. Equation (2) evaluates the 

scanning cost, s, by determining the number of times a user must scan non-empty lists that are 

generated in the process of addressing the email. Each time a user accepts a prediction (by 

clicking) or manually enters a recipient, the user has implicitly requested a list prediction 

beforehand. Thus, the total number of such requests is c + m. Only R of these requests are non-

empty, and thus only R  (c + m) of them must be scanned. This scanning can further vary based 

on the size of the list where larger lists may take significantly more effort to scan.  However, we 

strictly restrict our lists to contain at most 4 individuals as done in the state of the art approach 

used in Gmail [91], and thus we assume our scanning costs to be constant for our different list 

sizes. Finally, equation (3) determines the total number of clicks, c, which corresponds to the 

total number of correct positives, which, by definition is the number of non-empty lists, s, 

multiplied by the precision, P.  

These equations 1, 2, and 3 can be solved to compute the three effort values s, c, and m in the 

following steps: 

1.  𝑐 = 𝑃 ∙ 𝑠 

 𝑐 = 𝑃 ∙ (𝑅 ∙ (𝑐 + 𝑚)) 

 𝑐 = 𝑃𝑅 ∙ (𝑐 + 𝑚) 

 𝑐 =
𝑃𝑅

1−𝑃𝑅
𝑚 
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2. 𝐴 ∙ 𝑐 + 𝑚 = 𝑋 

 𝐴 ∙ (
𝑃𝑅

1−𝑃𝑅
𝑚) +𝑚 =  𝑋 

 
(𝐴𝑃𝑅+1−𝑃𝑅)𝑚

1−𝑃𝑅
= 𝑋 

 (𝑃𝑅(𝐴 − 1) + 1)𝑚 = (1 − 𝑃𝑅)𝑋 

 𝑚 =
1−𝑃𝑅

𝑃𝑅(𝐴−1)+1
𝑋 

3. 𝑠 = 𝑅 ∙ (𝑐 + 𝑚) 

 𝑠 = 𝑅 ∙ ((
𝑃𝑅

1−𝑃𝑅
𝑚) +𝑚) 

 𝑠 = 𝑅 ∙ (
𝑃𝑅+1−𝑃𝑅

1−𝑃𝑅
𝑚) 

 𝑠 =
𝑅

1−𝑃𝑅
𝑚 

 𝑠 =
𝑅

1−𝑃𝑅
(

1−𝑃𝑅

𝑃𝑅(𝐴−1)+1
𝑋) 

 𝑠 =
𝑅

𝑃𝑅(𝐴−1)+1
𝑋 

4. 𝑐 = 𝑃 ∙ 𝑠 

 𝑐 =
𝑃𝑅

𝑃𝑅(𝐴−1)+1
𝑋 

Thus the equations for all effort values based on A, P, R, and X are defined as follows: 

(4) 𝑠 =
𝑅

𝑃𝑅(𝐴−1)+1
𝑋  

(5) 𝑐 =
𝑃𝑅

𝑃𝑅(𝐴−1)+1
𝑋 

(6) 𝑚 =
1−𝑃𝑅

𝑃𝑅(𝐴−1)+1
𝑋 
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We can divide these three numbers by X to lead to the normalized fractional values, S, C, and 

M, respectively. This gives the final normalized versions of these effort metrics, which together 

we call the ASCM metrics:  

(7) 𝑆 =
𝑅

𝑃𝑅(𝐴−1)+1
  

(8) 𝐶 =
𝑃𝑅

𝑃𝑅(𝐴−1)+1
 

(9) 𝑀 =
1−𝑃𝑅

𝑃𝑅(𝐴−1)+1
 

Through these values, we now have measures of how often certain types of effort are exerted. 

An algorithm requires less user effort than another if it leads to lower (average) values of S, C, 

and M for the same email data set. When two algorithms are partially ordered by these three 

metrics, we make the following assumption: clicking a correct prediction takes the least amount 

of work and manually entering a recipient takes the most amount of work. Our justification for 

the assumption is the following: We clicking, we assume the user has already scanned the list 

and knows which predicted token is correct, and therefore the user only needs to determine 

where to click and perform the clicking action. Scanning is a higher cost because a user must 

recognize all tokens in the list, mentally map them to potential recipients, and judge each 

recipient as correct or not.  Finally, manual is the highest cost,  because the user must recall 

candidate recipients, judge which of those candidates are correct or not, select one such 

acceptable candidate, mentally map the candidate to its token (which the user must also recall), 

and correctly type the token. 

6.3. CONTENT VS. GROUP 

The existing and new metrics allow objective, quantitative comparisons between different 

points in the recipient prediction scheme design space. Furthermore, by comparing different 
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points in the design space, it is possible to determine the best approach(es) for generating flat 

recipient recommendation lists.  Then the lists generated by the best approach(es) may be 

hierarchically grouped in a composed hierarchical approach to provide the best hierarchical 

recommendations. 

Some of our identified metrics have, in fact, been used to compare some of these points. 

Carvalho et al. compared content and direction-based predictions with time-based predictions 

using P and found that content and direction yielded the best results [31]. Similarly, Roth et al. 

compared group, time, and direction-based predictions with time and direction-based ones 

through use of their Top Score variation and found the combination of all three properties fared 

better both in terms of P and R [91]. 

However, previous work has not compared group and content-based schemes, and different 

comparisons have not used consistent data sets or metrics.  Moreover, as mentioned earlier, the 

metrics they have used do not address certain types of user effort. Therefore, we expand on this 

work by using both our new metrics and classic metrics to perform direct comparisons between 

content and group-based prediction schemes. 

In order to effectively compare various prediction schemes, we also had to select appropriate 

values for the half-life constant and sent vs. received mail constants. As Roth et al did not release 

the values they used as parameters in the IR score, we varied them in the following manner: For 

time, we experimented with half-life values of one hour, one day, one week, four weeks, six 

months, one year, and two years. For direction, we varied 𝑤𝑜𝑢𝑡 as 0.25, 0.5, 1.0, 2.0, and 4.0, 

allowing testing with sent messages held in higher importance in some cases, and received 

messages in others.  In both cases, we found the best values vary depending on which variation 

of the algorithm is used. 
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We generated predictions using both the content-based scheme and all four of the group-

based variations. For the dataset, we used the version of the Enron email database retrieved from 

[11], which contained 127 accounts in total. The content-based scheme of Carvalho and Cohen 

also used Enron accounts, while the group-based scheme of Roth et al. used Gmail accounts 

available only to Google. For each account, we ordered the messages by time and removed any 

non-email based messages, such as those marked as calendar entries for outside applications. We 

then used the first 90% as the set of past messages for an account. The final 10% of the messages 

for an account were used to model prediction making. 

For each message, we assumed a seed value of 2 (the sender and one other intended 

recipient) at the start of all predictions. Each time a prediction list was generated, we assumed 

the user would select the first correct individual in a generated predicted list. If no such 

individual existed, then it was assumed that the user would manually enter the first recipient as 

ordered originally in the email message. We assume the ordering of recipients was first TO, then 

CC, and finally BCC. No such specification of the ordering exists in past work, so we have no 

source of comparison for this assumption.  

 

Table 14. Results of comparison of past algorithms 

Recommendation method Half Life wout P R and S C M 

Content N/A 

 

N/A 0.066 0.980* 0.065 0.935 

Top Score 
Best P 1.0 hours 2 0.486* 1.000* 0.486 0.514 

Best R 1.0 hours 2 0.486* 1.000* 0.486 0.514 

Intersection Count N/A N/A 0.319* 1.000* 0.319 0.681 

Intersection 

Score 

Best P 1.0 hours 2 0.486* 1.000* 0.486 0.514 

Best R 1.0 hours 2 0.486* 1.000* 0.486 0.514 

Intersection 

Weighted 

Score 

Best P 1.0 hours 2 0.495* 1.000* 0.495 0.505 

Best R 1.0 hours 2 0.495* 1.000* 0.495 0.505 

* indicates that p < 0.05 and null hypothesis was rejected with FDR of 0.05 
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Using this methodology, we arrived at the results displayed in Table 14. In this table, S and R 

are represented as a single value due to the fact that there are only individual predictions, which 

means that A = 1 in all cases. Because of this value of A, the value of S reduces to R. Similarly, 

because A has a constant value of 1, it is not displayed in the table. 

Since our P and R values are means from multiple accounts, we also performed statistical 

testing to ensure that both P and R were greater than zero.  Specifically, we tested for p < 0.05 

and using the Benjamini-Hochberg procedure using maximum FDR of 0.05, to remain consistent 

with previous tests.  As the table indicates, all group-based schemes passed these tests.  

However, content only passed in terms of R.  P was not significantly larger than 0, indicating that 

given our samples, we could not assume that generally this content approach would yield any 

lists containing at least one correct prediction. 

Table 14 shows that as M decreases, C increases, which falls in line with the definitions of C 

and M. If some item was not manually entered, then it must have been selected as a correct 

prediction, which means an additional click had to take place. It also shows that content-based 

prediction performs worse than group-based prediction in that there is at least one group-based 

prediction algorithm that performs better with respect to both P and R.  

Because P and R were measure directly for each account, and C and M were only computed 

based on the mean values of P and R, different P or R values could be tested as different based 

on significance testing.  Therefore, we identified which of parameters of each approach yielded 

the best P and R values. After performing this ranking, we observed that no group-based 

prediction of these best results has as high of an M value as that of content-based predictions.  

This indicates that content-based predictions require more effort for manual entries of recipients. 

This gave us our next sub-thesis: 
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In order to see if it is possible combine the spaces of group and content-based predictions, we 

also attempted predictions made by combining both groups and content. This combined attempt 

used the previously computed separate content and group scores.  The two scores were each 

scaled using adjustable weights and then summed together to form a cumulative score.  In some 

cases, we also scaled the content vectors according to the half-life values and the wout as used in 

group scores to include time and direction with content. 

In our best case of all these combinations of groups and content, we had a recall of 1.00 and a 

precision of .495, which imply clicking and manual entry values of .495 and .505, respectively.  

This does improve over groups with respect to the clicking and scanning metrics, but 

underperforms with respect to manual entries.  As stated above, we assume manual entry to be 

the metric which requires the most effort on the part of the user, which, in this case, implies 

combined group and content predictions are less effective than group predictions. Despite the 

comparatively low effectiveness compared to group-based predictions, these values are better 

than content alone.  This in the very least implies that the TF-IDF approach benefits from 

including groups in prediction making, but as a general approach, if predictions are made using 

content, TF-IDF is not a comparatively effective approach. 

Thus, our results provide evidence that (a) content is less effective than groups and (b) the 

combination of content and groups is less effective than groups alone. It is possible that the 

Sub-Thesis VII: Content and Group Flat Recipient Recommendation 

Previous group-based recipient recommendation in email requires less effort than previous 

content-based recipient recommendation in terms number of lists scanned, elements clicked, 

and recipients manually entered. 
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Gmail implementation of group-based prediction uses more optimal parameters, which would 

make our conclusion even stronger.  

6.4. INTERSECTIONS VS. SUBSETS 

Because of the low effectiveness of content, we focused on the use of groups, not content, in 

recipient predictions. Our goal was to offer new ways to generate predictions that are more 

effective according to both classical metrics and our own newly developed metrics. While the 

previous results are better than manual, they are not perfect.  Users were still required to 

manually enter some individuals as well as scan and click many times.  Therefore, it may be 

possible to develop a better flat recommendation approach.  

One improvement, which we present here, is motivated by applying group-based prediction 

(with our weights) to the author’s personal email account. We observed that, regardless of seed, 

every message had the same group of predicted recipients.  Upon further investigation, we 

discovered that the reason this group was constantly predicted was because this group was sent 

messages frequently over multiple years, including some messages sent very recently.  When 

making predictions, since the first author’s email address was always a part of the seed, this 

group always intersected with the seed and, thus, outranked more appropriate predictions due to 

its high recency and frequency of contact. 

One way to counter this situation is to exclude the sender from the seed or the ranked groups.  

(Roth et al. do not indicate whether they include the sender in their seeds.) While that approach 

would work in this specific scenario, it still allows a small intersection to overwhelm a larger 

one. Therefore, we explored an alternative seed-based approach that does not compute 

intersections but, instead, looks at subset relationships between the seed and the ranked groups. 

This subset-based approach was also based on our previously mentioned works that observed a 
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link between successful recipient prediction for a current message and features including the 

seed of the current message and groups in past messages that are supersets of the seed. 

In this subset-based approach, it is possible to develop variations that are analogues to the 

Intersection Count and Intersection Score variations of the intersection-based approach.  The 

variations are as follows: (1) Subset Count – If the seed is a subset of a group, then the score of 

that group is 1, and if it is not a subset, then the score is 0. Just as with Intersection Count, time 

and direction are ignored in Subset Count. (2) Subset Score – If the seed is a subset of a group, 

then that group’s score is the direction weight multiplied by the time weight. 

It is more difficult to create a subset-based analogue of the Intersection Weighted Score 

variation. If we simply multiply the time and direction product by the size of the subset, all 

values would remain the same relative to each other because the size of the seed never changes 

during a single round of prediction making. For example, if a seed of {A,B} is used to rank 

{A,B,C,D}, and {A,B,C,D,E,F,G,H}, the original seed {A,B} is always the subset, and thus the 

subset size is always 2. 

However, what is important is the relation of the size of the subset to the size of the group. 

Consider a seed of size 2 that is a subset of two groups whose sizes are 3 and 100. To predict the 

group of size 100 based solely on the seed value, the algorithm would, in essence, be guessing 98 

individuals. However, if the group of size 3 were predicted solely based on the seed value, the 

algorithm would only be guessing one individual, which ultimately leaves a smaller uncertainty. 

Therefore we define the Subset Weighted Score for a seed and group to be time and direction 

weights multiplied by |seed|/|group|. 
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6.4.1. RESULTS AND ANALYSIS 

The results from evaluating a subset-based use of seeds with the metrics used in comparing 

groups and content are shown in Table 16.  We also performed statistical tests against the null 

hypothesis that P and R were 0 in the subset based approach.  Again, this was tested to ensure p 

< 0.05 and the null hypothesis was rejected using the Benjamini-Hochberg procedure with an 

FDR or 0.05.  All tested values in Table 15 passed these statistical tests, indicating all 

approaches tested here have some non-zero precision and recall. 

As in the intersection-based approach, weighing scores gives best results. The best case of 

Intersection Weighted Score had a much higher recall value than the best case of Subset 

Weighted Score, while the reverse was true for precision. With the use of our new metrics, we 

are able to distinguish the effects such results would have on user effort.  

 

The metrics C and M yield similar values in both cases, indicating that users will have to 

exert roughly the same amount of effort for clicking predictions and manually entering 

recipients. However, the metric S, which is equal to R in the case of individual predictions, is 

much lower when using a subset-based approach. Thus, our metrics show that subset-based 

approaches reduce user effort with respect to scanning prediction lists, and, as a result, these 

approaches outperform the intersection-based approaches.  

Table 15. Results of subset based use of seeds 

Algorithm Half Life wout P R and S C M 

Subset Count N/A N/A 0.779* 0.583* 0.454 0.546 

Subset Score 1.0 minutes 0.25 0.936* 0.481* 0.450 0.550 

Subset Weighted Score 1.0 minutes 0.25 0.913* 0.583* 0.532 0.468 

* indicates that p < 0.05 and null hypothesis was rejected with FDR of 0.05 
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6.5. EXPANDED METRICS 

After developing our action-based metrics for tracking scans, clicks, and manual entries and 

presenting them in the proceedings of CollaborateCom 2014 [19] we became aware of other 

action based metrics that may be also applicable for evaluating recipient recommendation lists, 

such as Levenshtein’s distance [65] or the GOMS model [29].  The Levenshtein distance 

computes the number of edits users must perform (e.g. additions, deletions) to make two 

sequences equal.  The GOMS model treats user reactions primarily as periods of thought (e.g. 

reading, parsing, etc.), keystrokes to enter tokens, mouse clicks, or switches between the 

keyboard and mouse. 

The GOMS model was of particular interest to us, because it included in it our model of 

scans (user thinking), clicks (mouse clicks), and manual entries (keystrokes to enter tokens) with 

one additional metric, switches between mouse and keyboard.  Therefore, the GOMS model 

includes our dimensions of user effort in its own evaluation.  However, the GOMS model 

requires the collection of user actions either from actual users interacting during the 

recommendation or by replaying/modeling user actions with recommendations.  These actions 

cannot be inferred from precision and recall values as we have done with our ASCM metrics. 

Collecting, replaying, or modeling actions can be a difficult process if one wishes to compare 

past approaches with the GOMS model that were not evaluated with those  metrics in the past.  

To reevaluate past approaches with the GOMs model, it is necessary to create infrastructure to 

capture such actions and rerun past studies or models. Both can be costly tasks.  Therefore, if our 

Sub-Thesis VIII: Subset and Intersection-based Flat Recipient Recommendation 

Subset-based recipient recommendation in email requires less effort than intersection-based 

recipient recommendation in terms number of lists scanned, elements clicked, recipients 

manually entered, and switches between mouse and keyboard 

 



 

223 

 

methods for inferring scans, clicks, and manual entries from precision and recall match 

observations from collected actions, it is possible, without new experiments, to compare past 

approaches in terms of many of the GOMS model metrics when those approaches were only 

evaluated in terms of precision and recall. 

To compare our inferred effort costs with the GOMS model’s metrics, we re-evaluated our 

intersection vs. subset approaches and any future recipient recommendation approaches using 

both the GOMS model and our ASCM model. Because our knowledge of the GOMS model 

came after the publishing of this initial comparison, this required rerunning a variety of recipient 

recommendation experiments.  In the case of group-based recommendations, rerunning of 

experiments was relatively low cost.  Typically, an entire email account can be evaluated in a 

few minutes.  Email addresses are easily tokenized, and thus quickly parsed, due to a well-

defined format [88], and while some messages were found to have over 100 recipients, messages 

had on average 6.20 recipients and a median of 1 recipient.  This quick parsing led to quick 

recommendation generation and evaluation.  

 Content-based recommendations, however, were not as easy to re-evaluate.  Content is much 

more difficult to parse, because message bodies and words do not follow a common format and 

often contain more than 100 words in each message. This led to significant time to generate and 

evaluate recommendations for a single message.  In some cases, accounts required hours or days 

to generate recommendations, which may re-evaluation unfeasible at this stage.  Therefore, we 

did not compare the GOMS and ASCM models based on the content vs. group recommendations 

evaluations. 
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6.5.1. RESULTS AND ANALYSIS 

The results rerunning both intersection-based and subset-based recipient prediction with the 

GOMS model metrics are shown in Table 16 and Table 17, respectively.  Recall that we already 

presented the respective ASCM model results in Table 14 and Table 15.  

 

 

We also performed statistical tests against the null hypothesis that any of the GOMS model 

metrics (relative scans, relative clicks, relative manual entries, or relative switches between 

mouse and keyboard) were equal to 1.  Again, we tested the statistical significance of these 

values.  To do so, we paired each metric for each message with the worst case of that respective 

metric.  For each of our relative scans, relative clicks, relative manual entries, and relative 

switches between mouse and keyboard this worst case metric was 1.0.  Then, using these paired 

values, we tested our metrics against the null hypothesis that they were greater than or equal to 

the worst case using a sign test and a paired Student t-test.  For these tests we used a threshold of  

Table 16. GOMS model results of intersection-based use of seeds in email 

Recommendation 

method 
Half Life wout 

relative 

scans 

relative 

clicks 

relative 

manual 

entries 

relative switches 

between 

mouse/keyboard 

Top Score 1.0 hours 2 1.000 0.492* 0.508* 0.340* 

Intersection Count N/A N/A 0.996* 0.330* 0.670* 0.283* 

Intersection Score 1.0 hours 2 0.996* 0.478* 0.522* 0.313* 

Intersection Weighted 

Score 
1.0 hours 2 0.996* 0.485* 0.515* 0.318* 

* indicates that p < 0.05 with both a sign test and paired Student’s t-test  

Table 17. GOMS model results of subset-based use of seeds in email 

Algorithm Half Life wout 
relative 

scans 

relative 

clicks 

relative 

manual 

entries 

relative switches 

between 

mouse/keyboard 

Subset Count N/A 0.25 0.594* 0.499* 0.501* 0.331 

Subset Score 
1.0 

minutes 
0.25 0.490* 0.475* 0.525* 0.314 

Subset Weighted 

Score 

1.0 

minutes 
0.25 0.594* 0.550* 0.450* 0.370* 

* indicates that p < 0.05 with both a sign test and paired Student’s t-test 
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p < 0.05 and used the Benjamini-Hochberg procedure with an FDR or 0.05.  All tested values for 

the intersection based approach in Table 16 passed these statistical tests, indicating that all 

approaches did not require that users scan lists for each recipient, click a recommendation for 

each recipient, manually enter each recipient, or switch between the mouse and keyboard for 

each recipient.  Moreover, the results for the subset-based approach in Table 17 were almost 

always significantly better than the worst case. Only in switches between mouse and keyboard 

did we find some results that could not be shown to be significantly less than 1.0, and this only 

occurred in 2 out of the 3 approaches. 

These results support our ASCM model result.  Recall, that our results indicated that both 

intersection and subset-based approaches were better than the worst case in terms of scans, clicks 

and manual entries.  Since these are the only areas in which these two evaluation schemes 

overlap, this suggests that the results from these evaluation schemes may be similar in these 

areas of scans, clicks, and manual entries. 

To evaluate this similarity, we compared the absolute errors between the ASCM values with 

the mean GOMS model metrics. Overall, we found these absolute errors to be small. At most, the 

absolute error was 0.045, a very low value.  Moreover, our min absolute error was 0.000, which 

indicates that the ASCM metric values perfectly matched the GOMs model metrics in at least 

one case.  While this is a small sample size, it still provides evidence that our computed metrics 

are a good approximation of some GOMS model metric. If such an approximation is possible 

generally, our computations can be used to evaluate work using GOMS model metrics without 

building infrastructure for capturing the actual rate of clicks, scans, and manual entries.  

Evaluation with some GOMS model metrics can then be made without changing previously 
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developed experiment environments or without rerunning experiments that only collected P and 

R. 

6.6. HIERARCHICAL PREDICTIONS 

The fact that the subset-based treatment of seed values outperforms that of intersection-based 

treatment indicates that there is a hierarchical tree of groups in the set of possible predictions. If 

this is indeed true, users should be able to reduce their click count by selecting not just leaf nodes 

in the tree but also intermediate nodes.   

To illustrate how such an approach would work, consider a graduate student Evan who 

shares with many users regularly (Alice, Bob, Chris, David, and Zach) but has not taken the time 

to form any named groups.  However, he does communicate with them as groups in three 

different physical or logical contexts: as his fellow graduate students, as his classmates, and as 

his lunch group.  These physical and logical groups can be organized a hierarchy in Figure 38.  

As the figure illustrates, all of Evan’s contacts can be classified in Graduate Students, while only 

some can be classified in Classmates or in Lunch Group, and no individual is in both Classmates 

and Lunch Group. 

 

Figure 38. Example User Hierarchical Relationships 

Flat recommendation list only recommend the leaves of this tree and not intermediate nodes.  

However, given that Evan communicates with these users in groups, it is likely that many of his 

Graduate Students 

Classmates Lunch Group 

 

Alice Bob Chris David Zach 
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messages may be addressed to his intermediate nodes which map to Classmates, Lunch Group, 

or Graduate Students. 

To illustrate why such a task is difficult with recommendation lists, assume Evan wants to 

email the Classmates intermediate node, which contains three users (Alice, Bob, and Chris) 

about possibly collaborating on an upcoming group homework assignment. Suppose Evan is 

presented a list of 10 recommended recipients using a flat recommendation list. This list contains 

all three of the classmates with whom he wishes to communicate. Because Evan can only select 

one of the recommendations in the list, he can only select one of his recommended classmates 

(Alice) and hope the next two recommendation lists will still contain his other two desired 

recipients.  In the best case, each of the next two recommendation lists will indeed contain Bob 

or Chris.  Even in this best case, Evan will have to scan these additional lists of 10 

recommendations and select the correct recommended recipient, which may be a high effort task 

if Bob and Chris are not at the some of the first elements in the lists.   

Moreover, with the generation of additional recommendation lists, there is a chance that each 

new list will contain no correct recommendation.  Therefore, if there are more lists that are 

generated, there is a higher the chance that some lists will not contain a correct recommendation. 

In our example, Evan may scan his two additional recommendation lists only to find they now do 

not contain Bob or Chris.  In such a case, he also may also need to exert effort to manually enter 

a recipient in addition to previously exerting effort to scan incorrect recommendations. 

Some past work has addressed the issue of multiple correct recommendations in a single list 

by allowing users to choose all correct recommendations in a list before submitting a selection, 

such as the work by Amershi et al. [6].  If such a system were used in our example above, Evan 

would be able to choose Alice, Bob, and Chris from the first recommendation list before 
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submitting his selection.  Therefore, Evan would not need to scan and select from any additional 

lists or manually enter any recipients. 

However, this approach requires that the user correctly choose all items from a list before 

submitting a selection, which is similar to the problem of manually forming named groups where 

users must identify a group of users from a set of possible users.  As discussed earlier, this can be 

a high effort task.  Moreover, this task may occur multiple times if the user needs to handle 

multiple recommendation lists. 

To address this issue, our goal was to develop an approach to hierarchically cluster recipient 

recommendations to allow the selection of multiple individually recommended users but not 

require users to increase effort in order to choose how recommendations should be grouped.   

In order to develop a successful hierarchical grouping approach, we had to develop a scheme 

for computing the hierarchy and a user-interface for displaying and selecting both leaf and non-

leaf nodes in the hierarchy. There are several approaches for doing so – the one we settled on 

makes few changes to the algorithm and user-interface for individual predictions.  

The goal was not to develop a scheme from scratch.  Instead, given the success in previous 

intersection and subset-based approaches, we wanted to develop a method that would create 

hierarchical prediction lists from individual prediction lists that were generated by some other 

group-based algorithm external to and, thus composable with, our algorithm. In this way, we 

would retain the benefits of past successful approaches alongside our new benefits of 

hierarchical groups.  This relationship is illustrated in Figure 39.  Our algorithm generates 

hierarchical prediction list using predicted individuals and ranked groups from some external 

algorithm(s). In general, a hierarchical prediction list can contain overlapping groups, and has 

also been used in other email-based recommendation schemes.  For example, MacLean et al. 
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[69] displayed a hierarchical list of named group recommendations for email, where children 

may have multiple parents. We constrain our hierarchy to a tree, where a node has a single 

parent, which allows us to make few changes to the recipient recommendation user-interface.  

 

Figure 39. Input and output of our hierarchical algorithm 

Our hierarchical algorithm builds a tree out of the individual prediction list, re-ordering the 

predictions if necessary. We assume parentheses (or some other marker symbol) are used to 

show the groupings, and that the markers do not significantly add to the scanning cost, because, 

as mentioned before, our experiments, like those of Roth et al. [91], limit our prediction lists to at 

most 4 individuals. An example of this interface is show in Figure 40(b), which is a part of a 

Mozilla Thunderbird extension that we developed. 

 

 

We assumed the effort required to scan the lists with these markers is dependent on the 

number of the markers in these lists, where lists with more markers would require more effort to 

 

(a) Addressing recipients 

 

(b) Predicting Recipients 

Figure 40. Hierarchically Predicted Recipients in a Mozilla Thunderbird Extension 
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scan.  This number of markers can be directly computed based on the number of hierarchical 

groups in the list, since each group requires two markers in our interface.  It is possible to 

calculate the maximum number of hierarchical groups in any general list of length n.  

At the top level of such a list, as long as n is greater than 1, all elements in the list can be 

grouped together.  Then, under at the second level, a sub-group can be formed of 2, 3, 4,…, or n-

1 elements within the list. Moreover, if 2 or more elements are not included in the sub-group, 

they may be grouped together in a separate sub-group. In a sense each of these sub-groupings 

form a top-level grouping for some sub-list, meaning we can recursively determine the maximum 

number of groups within the sub-group of length n-1 using the same approach as the top-level 

group.  Therefore, it is possible to calculate the maximum number of groups in a given 

hierarchical list as the following recursive equation: 

𝑚𝑎𝑥𝐺𝑟𝑜𝑢𝑝𝑠(𝑛) = {
1 + max𝑖=2

𝑛−1[𝑚𝑎𝑥𝐺𝑟𝑜𝑢𝑝𝑠(𝑖) + 𝑚𝑎𝑥𝐺𝑟𝑜𝑢𝑝𝑠(𝑛 − 𝑖)],       𝑛 > 1

 0,                                                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
 

With the assumption of at most 4 individuals, this equation yields a maximum of 3 groupings 

and, therefore, at most 6 markers. With this relatively small number of characters added to the 

prediction list, we assume that our scheme does not add a significant amount of effort with 

respect to scanning an individual prediction list. However, if prediction lists contained no limit or 

a much higher limit on the number of individuals, the maximum number of groupings, and thus 

markers, would increase significantly, which could drastically change the scanning costs of a 

hierarchical prediction list compared to a flat list.  

Because our individuals are generated using external algorithms, individuals are selected as 

they would in previous UIs, by clicking the name of that individual. To select a grouping, the 

user must click one of the markers associated with that grouping.  
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Intuitively, because our hierarchical approach will be composable with past approaches, it 

will work as well if not better than a single recipient flat list of recommendations for each 

message.  If a single hierarchical list is used in place of the flat one, users will still be able to 

select the same option they would have in the flat case.  To illustrate, consider a user trying to 

address A for a message with a seed of {Z}, and is presented with a flat list “A, B, C” or a 

hierarchical list “(A, C) B”.  In both cases, the user can select A as an individual recipient. 

However, if the user needs to use more than one recommendation list, it is possible that our 

hierarchical approach may perform worse than flat lists.  Because hierarchical lists may change 

the order in which recipients are added to seeds and the generation of future lists are based on the 

content of seeds, the predictions in subsequent lists may change based on whether a prior list is 

hierarchical or not.  To illustrate, suppose users wanting to add the recipients A, B, and C to a 

message with a seed of {Z}.  Suppose that with flat lists, they are presented with list “A, B, C” 

from which he selects “A” to make his seed {A, Z}. Then they presented with the list “B, C, D”, 

from which they selects B to make his seed {A, B, Z}.  Finally they are presented the list “C, D, 

E”, from which they selects “C”, making his seed {A, B, C, Z}.  Thus in the flat case they are 

required to scan 3 lists, click 3 times and manually enter no recipients. 

However, if users are presented hierarchical lists, the first list based on the seed {Z} may be 

“(A, C) B”, from which they selects A and C, making the seed {A, C, Z}.  This is a different 

seed than any seed in the flat case and may generate a hierarchical list such as “(D E F)” that 

does not contain B.  Therefore, users must manually enter B, meaning they had to exert more 

effort than the flat case.  
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6.6.1. ALGORITHM 

To illustrate the algorithm for generating a hierarchical list, we will use a variation of our 

running example. Chris has a larger group of friends with whom he has lunch (Figure 36(e)). 

This group is subdivided into smaller study groups based on who is enrolled in his various 

classes. For this illustration, we will also assume that an external algorithm finds the list of 

predicted individuals {Albert, Eddie, George} and finds the following set of groups: <Albert> 

<Albert, George>, <Albert, Eddie, George >.  Our goal is to organize these three nodes into a 

tree based on the ranked groups.  
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Figure 41 gives our algorithm for meeting this goal. In this algorithm, individual and 

hierarchical lists are defined by the type PredictionList, which is a list of objects of type 

Prediction. A Prediction can be a Grouping or an Individual, and has two fields, group and rank. 

The former field is the top ranked group of which the prediction is a member/subset, and the 

1 object types: 

2  PredictionList: ordered set of predictions 

3  Prediction: {group, //mapped group of individuals 

4    rank} //order in prediction list 

5  Grouping ISA Prediction:  ordered set of predictions  

6  Individual ISA Prediction: {id} // name of individual 

7  

8 global vars: 

9  indivList = list of individual predictions of non-hierarchical scheme 

10  

11 functions: 

12  buildHierarchicalPredictionList(): 

13    treeList = new PredictionList // create empty list 

14    forall p in indivList do addToPredictionList(treeList, p) endFor 

15  

16  addToPredictionList(treeList, new): 

17    merged ← false 

18    next  ← new; 

19    forall old in treeList where old != next do 

20       if old.group  next.group  | next.group  old.group then 

21          merged ← true 

22          mergedGrouping ← merge(old, next)  

23          remove old and next if they were in treeList 

24          list.add(mergedGrouping) 

25          next ← mergedGrouping 

26       endif                  

27    endFor 

28    if !merged then 

29       list.add(new) 

30    elseif treeList.size == 1 & tree_list is within a Grouping then 

31    //all members of a Grouping were merged into a subgroup 

32       treeList.members = members of only child 

33    endif 

34  

35  merge(p1, p2): 

36    if p2.group  p1.group then merge(p2,p1) endif 

37    if p2 is Grouping then  

38       addToPredictionList(p2.members, p1)  

39       p2.rank ← max(p1.rank, p2.rank)  

40       return p2 

41    else //p2 is individual 

42       g = new Grouping with p1 and p2 in members 

43       g.group ← p2.group 

44       g.rank ← max(p1.rank, p2.rank)  

45       return g 

46    endif 

Figure 41. Pseudocode for hierarchical grouping 
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latter is the rank of said group. The variable indivList contains Prediction objects for the 

individuals predicted by the external algorithm. In our example, the indivList would contain the 

following Individual objects: 

{id: Albert, group: <Albert>, rank: 0} 

{id: Eddie, group:<Albert, Eddie, George>, rank: 2} 

{id: George, group:<Albert, George>, rank: 1} 

The function buildHierarchicalPredictionList() builds a hierarchical list from indivList (lines 

12-14). This is done by calling the function addToPredictionList(), which adds each member of 

the original list, indivList, to the hierarchical list (line14).  During this process, as each 

individual is added to the hierarchical list, the function attempts to merge the new individual with 

the existing members of the hierarchical list.  This merging, which occurs because of subset 

relationships between the group field of the new individual and of existing members, arranges 

the list into a hierarchy (lines 19-27). 

Because these merges occur based on subset relationships, a newly added individual may not 

merge with any existing members due to a lack of such a relationship.  In this case, the new 

individual is added to the end of the hierarchical list (line 29). For example, in Figure 42(a), 

when the first individual, Albert, is added to the hierarchy, there are no other members of the 

hierarchical list, and thus Albert cannot be merged with an existing member.  This means the 

code within the for loop in lines 20-25 is never run, because there are no other elements in the 

list to check, and thus the merged variable is never set to true. Therefore, the new node will be 

added to the hierarchy as a single leaf node in line 39 and the list would be displayed as: Albert. 
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Figure 42. Steps of generating the example hierarchical list 

However, merges will occur in cases when a subset relationship exists between the group 

fields.  In one such case, the newly added Individual has a group field that is a superset of an 

existing member’s group field. The algorithm will perform a merging by placing both the new 

Individual and the existing member in a new Grouping and that Grouping replaces the old 

member in the hierarchy, thus occupying its original position.  In our example, in Figure 42(b), 

Eddie is initially added as a leaf node to the hierarchical list. The for loop in lines 19-27 will find 

the Individual Albert in the tree list. Then, since his group field, <Albert, Eddie, George>, is a 

superset of Albert’s group field, <Albert>, the merge flag will be set to true (line 21) and both 

Albert and Eddie will be merged (line 22).  Since the prediction with the superset group (Albert) 

is an Individual and not a Grouping, the two predictions are put in a new Grouping (line 42).  

Albert 

(a) Adding Albert 

Albert Eddie 

(b) Eddie is the next prediction 

<Albert, Eddie, George> 

Albert Eddie 

(c) Merging Eddie at the top level 

<Albert, Eddie, George> 

Albert Eddie George 

(d) George is the next prediction 

<Albert, Eddie, George> 

Albert Eddie George 

(e) Merging George at the top level 

<Albert, Eddie, George> 

Eddie <Albert, George> 

Albert George 

(f) Merging George within the hierarchy 
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The newly created Grouping’s group field takes the value of the largest group fields from its 

members (line 43).  This new Group then replaces the Albert node in the hierarchy (line 23-25), 

resulting in the hierarchy shown in Figure 42(c). This hierarchy gives us (Albert, Eddie) as our 

displayed list at this stage.  

Finally, in the last case we consider, the newly added Prediction has a group field that is a 

strict subset of an existing member’s group field.  If the existing member is a Grouping, the new 

Prediction can be added to the existing member.  However, if the existing member is an 

individual, the previous approach of creating a new Grouping containing the old and new 

Predictions is used.  In our example, we must next add George to the hierarchy in Figure 42(d).  

His group field, <Albert, George>, is a subset of the top level Grouping’s group field, <Albert, 

Eddie, George>, which means the if statement at line 20 is evaluated as true and the two are 

merged at line 22.  Because the Prediction with the superset is Grouping, line 39 in the merge 

method is called. This line adds George to the list of members in the existing Grouping in Figure 

42(e). This Grouping will retain the same group field, since it was the largest group field of all of 

its members.   

To allow multi-level hierarchies, the command to add the George to the list of members of 

the Grouping is the same call made to add George to the top level list of predictions, making it a 

recursive call.  Thus, we can recursively merge Predictions with other members of a Grouping. 

In the example, since George is the newly added Prediction, and his group field is a superset of 

Albert’s group field, Albert and George are merged on line 22.  Thus causes a new Grouping 

containing both Albert and George to be formed (line 42), the Albert and George nodes are 

deleted and  the new Grouping is placed at Albert’s position (lines 23-24), leaving us with the 

hierarchy in Figure 42(f), and the displayed list of: 
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 ( (Albert, George), Eddie ). 

To provide a deterministic ordering of this hierarchy, the Groupings are ordered by the 

highest ranking individual contained in the grouping (line 44). Albert came before Eddie in the 

original individuals prediction list, so the grouping (Albert, George), comes before the individual 

Eddie. 

6.6.2. RESULTS AND ANALYSIS 

To test the effectiveness of this algorithm, we composed our algorithm with two best 

variations of the intersection and subset approach. We ran a similar modeling scheme to the one 

used in the individual predictions. Our only change was in how we assumed users would accept 

predictions. Using the past approach, we assume the user accepted the first correct prediction. In 

the hierarchical approach, we assume users will pick the largest grouping that contains all correct 

predictions, because by doing so, users are attempting to reduce their work as much as possible. 

The mean values from the ASCM and GOMS model metrics are detailed in Table 18 and 

Table 19, respectively. Moreover, we tested whether the values for the hierarchical approaches 

were significantly better than the flat approaches.  In the case of ASCM values, we used Student 

t-tests to verify that the overall mean values for  P (precision), R (recall), and A (average selected 

individuals per click), were significantly below the overall mean values for flat approaches.  In 

the case of GOMS model, we paired each of the flat and hierarchical results by message, and 

then compared the results using a sign test and a paired Student t-test. 

As before, we observed that the computed S, C, and M values were close to the 

corresponding mean value for GOMS model metrics.  However, the corresponding metrics 

showed a slightly larger maximum and minimum absolute error with respect to each other, which 

were 0.101 and 0.003, respectively. This indicates the ASCM results are still very close in value 
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to the GOMS model, but this range indicates that we did not find any perfect matches between 

the two models and corresponding metrics yielded higher error than in the previous test. This 

growth of the maximum absolute error can largely be attributed to clicks.  If we instead look at 

the range of absolute error across scans and manual entries we see [0.003, 0.069].  This is a much 

closer range to that seen in flat recipient recommendation. Moreover, since we assume clicks to 

be lowest effort action, an incorrect approximation of that value is less of an issue than if scans 

or manual entries were incorrectly approximated.  

In terms of the goodness of our hierarchical recommendations, P and R values are lower than 

those seen in purely individual predictions, which is to be expected if the tree-based scheme 

identified some of the intended groupings. As multiple predictions are accepted at once, such a 

scheme reduces the number of times a prediction list containing a correct match is generated.  

 

Table 18. ASCM model hierarchical results 

  Half Life 

Relative 

Sent 

Importance P R A S C M 

Intersection Score 1.0 hours 0.25 0.274 1.000 1.184* 0.907 0.504 0.403 

Intersection Weighted 

Score 
1.0 day 0.25 0.556 1.000 1.331* 

0.829 0.516 0.313 

Subset Score 1.0 hours 0.25 0.786 0.565 1.665* 0.431 0.358 0.404 

Subset Weighted Score 1.0 hours 0.25 0.827 0.559 1.689* 0.424 0.351 0.408 
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The M value remains approximately the same, which is also to be expected. Because our 

grouping algorithm is orthogonal to the generation of individual predictions, we still generate 

empty lists and lists with no correct predictions at the same rate as in the external algorithm. 

The S and C values are reduced by a significant amount. Specifically, our S values are 

reduced by half in the case of subset-based treatment of the seed and the click count is reduced 

by about half in all cases. This indicates that the user will have to select predictions half as often 

in all cases and will have to scan prediction lists half as often with subset-based predictions, 

which is a significant reduction in effort.  

 

6.7. RECIPIENT PREDICTION BEYOND EMAIL 

As mentioned earlier, there are many systems not in the email domain that require the 

addressing of recipients for messages.  For example, Stack Overflow and Usenet posts must be 

addressed to specific tags or newsgroups, respectively.  Moreover, many of these other systems 

are addressed to many recipients.  For example, 28.6% of the posts in the 20 Newsgroups data 

Table 19. GOMS model hierarchical results 

  

Half 

Life 

Relative 

Sent 

Importance 

Relative 

scans 

Relative 

clicks 

Relative 

manual 

entries 

Relative switches 

between 

mouse/keyboard 

Intersection Score 
1.0 

hours 
0.25 0.896* 0.539* 0.357 0.476 

Intersection Weighted 

Score 
1.0 day 0.25 0.887* 0.578* 0.310 0.537 

Subset Score 
1.0 

hours 
0.25 0.500* 0.459* 0.381 0.456 

Subset Weighted Score 
1.0 

hours 
0.25 0.493* 0.452* 0.381* 0.567 

* indicates that p < 0.05 with both a sign test and paired Student’s t-test 

Sub-Thesis IX: Hierarchical Email Recipient Recommendation 

It is possible to hierarchically group flat recipient recommendation lists in email such that 

the hierarchically grouped lists require less effort than the flat lists in terms of number of 

lists scanned, elements clicked, and recipients manually entered. 
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set were addressed to more than one newsgroup and 87.5% of Stack Overflow questions were 

addressed to multiple tags.  Correctly addressing these multiple newsgroups or tags is likely to be 

difficult, because the set of possible newsgroups or tags is large. 

Therefore, it is likely that not only would these systems likely benefit from recipient 

prediction, but they may also benefit from hierarchical recipient prediction.  With hierarchical 

recipient prediction, users can select multiple correct recipient recommendations at once, without 

exerting effort to manually group recommendations.  To illustrate how such recommendations 

would work, we present a mockup for Stack Overflow in Figure 43.  At the bottom of the figure, 

the user has his cursor in the field for specifying tags and has already entered reply.  Just below 

this field, the system has suggested the hierarchical grouping of the tags python, email, and 

recommendation.  Each of these tags can be selected individually, or the user may select email 

and recommendation together or email, recommendation, and python together. 

 

Figure 43. Mockup of hierarchical recipient recommendation in Stack Overflow 

Such recommendations could be made using the same approach used in email.  However, it 

is not clear that such hierarchical recommendations would be more effective than flat 
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recommendations.  Often email users address a high number of recipients in a message.  For 

example, consider the number of recipients per message as shown in Table 20. In our email user 

study, we found some users addressed as many as 197 recipients in a single message, and 

similarly in the Enron email corpus we found a single message addressed to over 763 recipients, 

some of which in both cases may have been addressed through groups such as listservs.  With a 

higher number of recipients, it becomes more likely that some lists of recommendations contain 

more than one correct recommendation.  Therefore, it is more likely in such cases that a 

hierarchical recipient recommendation approach will require less effort than flat approach. 

 

 However, some communities systems that may benefit from recipient recommendation do 

not tend to include as many recipients.  Stack Overflow explicitly limits users to including at 

most 5 tags in a single question.  While Usenet does not have such a strict restriction, we 

observed that messages from the 20 Newsgroups data set contained at most 18 newsgroups in a 

single message. 

To test the effectiveness of both flat and hierarchical recipient recommendation, we used the 

previously discussed 20 Newsgroups [118] and Stack Exchange public data dump [113] data 

sets. As before, we pruned the 20 Newsgroups to remove any duplicate messages and the Stack 

Exchange data dump to remove any messages that were not questions posted directly to Stack 

Overflow. Also, as with the interaction rank group generation approach, we could classify 

Table 20. Recipients per message in the datasets 

Dataset min max median mean stdev 
Messages with more 

than 2 recipients 

Email user study 1 197 2 3.97 13.81 0.967 

Enron Email Corpus 1 763 2 7.20 22.9 0.977 

20 Newsgroups 1 18 1 1.67 1.44 0.286 

Stack Overflow public data dump 1 5 3 2.95 1.22 0.875 

 



 

242 

 

different messages as sent or received in either of these data sets.  Therefore, we used a 𝑤𝑜𝑢𝑡 

value of 1.0. 

Using these pruned messages and set sent constant, we could order messages by the time they 

were posted, and use the methodology used in email to evaluate recipient recommendation 

schemes. 

6.7.1. RESULTS AND ANALYSIS 

6.7.1.1. USENET  

The results for flat recipient recommendation in Usenet are shown in Table 21. Both sets of 

tables contain both the S, C, and M values calculated from precision and recall and the GOMS 

model results. 

As in email, the A and S values are not reported in the flat recipient recommendation results, 

Table 21. This is because, as mentioned previously, A is always one and S is equivalent to R in 

the case of flat recommendation lists. Also, recall that we assumed users not using any 

recommendations must manually enter all recipients and are not required to scan any lists or 

click any entries. Therefore, in the manual case, M is 1.0 and both S and C are 0.0. By the same 

logic, we assumed that in the manual case there were 1.0 relative manual entries, and 0.0 relative 

scans and clicks. 

With these assumptions, we found that flat recommendations in Usenet had a much lower 

values for the ASCM metric M and the GOMS model metric manual entries, but higher values 

for the ASCM metrics S and C and for the GOMS model metrics relative scans and relative 

clicks. As mentioned earlier, we assumed manually entering recipients is higher effort than scans 

or clicks, and therefore ranked approaches first by M or relative manual entries. Therefore, we 

judged flat recipient recommendations to be better than no recommendations in Usenet. 
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Moreover, among the intersection-based methods, Intersection Group Count performed 

worse than the other two intersection-based methods with the highest P values, and among the 

subset-based methods, Subset Group Count performed similarly worse than the results of the 

other two subset-based methods with the highest P values. These results match with those we 

observed in email. 
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We then tested the approaches that performed best in flat lists with the corresponding 

hierarchical approaches. The results of these are shown in Table 22.  Again, for we paired the 

GOMS model values with their flat counterparts from the same messages and evaluated against 

Table 21. Flat recipient recommendation results in Usenet 

 

Ranking Half Life P R and S C M 

Top Contact Score 
best precision 1.0 minutes 0.290 0.992 0.288 0.712 

best recall 1.0 hours 0.227 1.000 0.227 0.773 

Intersection Group 

Count 
- N/A 0.457 0.998 0.456 0.544 

Intersection Group 

Score 

best precision 1.0 hours 0.678 0.996 0.675 0.325 

best recall 2.0 years 0.449 0.998 0.448 0.552 

Intersection 

Weighted Score 

best precision 1.0 days 0.731 0.996 0.728 0.272 

best recall 2.0 years 0.571 0.998 0.570 0.430 

Subset Group 

Count 
- N/A 0.457 0.998 0.456 0.544 

Subset Group 

Score 

best precision 1.0 minutes 0.947 0.659 0.624 0.376 

best recall 2.0 years 0.927 0.906 0.840 0.160 

Subset Weighted 

Score 

best precision 1.0 minutes 0.947 0.659 0.624 0.376 

best recall 2.0 years 0.928 0.906 0.841 0.159 

 

(a) ASCM metrics 

 
Ranking Half Life 

relative 

scans 

relative 

clicks 

relative 

manual 

entries 

switches between 

mouse/keyboard 

Top Contact Score 
best precision 1.0 minutes 0.995* 0.222* 0.778* 0.197* 

best recall 1.0 hours 1.000 0.184* 0.816* 0.192* 

Intersection Group 

Count 
- N/A 0.997* 0.594* 0.406* 0.589* 

Intersection Group 

Score 

best precision 1.0 hours 0.996* 0.669* 0.331* 0.560* 

best recall 2.0 years 0.997* 0.565* 0.435* 0.560* 

Intersection Weighted 

Score 

best precision 1.0 days 0.996* 0.710* 0.290* 0.580* 

best recall 2.0 years 0.997* 0.619* 0.381* 0.563* 

Subset Group Count - N/A 0.997* 0.594* 0.406* 0.589* 

Subset Group Score 
best precision 1.0 minutes 0.663 0.609* 0.391* 0.462* 

best recall 2.0 years 0.923* 0.831* 0.169* 0.615* 

Subset Weighted 

Score 

best precision 1.0 minutes 0.663 0.609* 0.391* 0.462* 

best recall 2.0 years 0.923* 0.832* 0.168* 0.616* 

* indicates better than the worst case with p < 0.05 using both a sign test and paired Student’s t-test 

 

 (b) GOMS model metrics 
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the null hypothesis that flat request the same or less effort using a sign test and a paired Student 

t-test. We also tested against the null hypothesis that the mean A value was equal to 1.0 for each 

hierarchical approach. As displayed in Table 22(b), these null hypotheses were rejected with p < 

0.05 for scans and clicks. In comparison, manual entries and switches between mouse and 

keyboards were not shown to be significantly lower in the hierarchical case. 

 

As in email, there was little difference in value for the M, relative manual entries, and 

relative switches between mouse/keyboard metrics when comparing a corresponding hierarchical 

and flat approach. However, the S, C, relative scans, and relative click values are lower in 

corresponding hierarchical approach.  The mean S and C values decreased by approximately 

0.28 in each case, while mean relative scans and relative clicks decreased by approximately 0.12 

in each case. This is due to the A values which are higher than 1 in all cases of the hierarchical 

Table 22. Hierarchical recipient recommendation results in Usenet 

 
Half Life P R A S C M 

Intersection Group 

Score 
1.0 hour 0.600 0.995 1.531* 0.756 0.453 0.306 

Intersection 

Weighted Score 
1.0 day 0.644 0.995 1.627* 0.710 0.457 0.256 

Subset Group 

Score 
1.0 minutes 0.907 0.525 1.825* 0.377 0.342 0.376 

Subset Weighted 

Score 
1.0 minutes 0.908 0.529 1.791* 0.383 0.348 0.377 

* indicates that p < 0.05 and null hypothesis was rejected with FDR of 0.05 

 

 (a) ASCM metrics 

 
Half Life 

relative 

scans 

relative 

clicks 

relative 

manual 

entries 

relative switches 

between 

mouse/keyboard 

Intersection Group 

Score 
1.0 hour 0.889* 0.575* 0.317 0.552 

Intersection Weighted 

Score 
1.0 day 0.870* 0.595* 0.279 0.573 

Subset Group Score 1.0 minutes 0.536* 0.481* 0.391 0.462 

Subset Weighted 

Score 
1.0 minutes 0.538* 0.484* 0.391 0.462 

* indicates better than the flat recommendations p < 0. using both a sign test and paired 

Student’s t-test 

 

 (b) GOMS model metrics 
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approach. (A values ranges from 1.531 to 1.825 in the hierarchical approach.) Recall that this 

value measures the average number of individuals chosen when a user accepts some prediction 

from a particular list. Therefore, if this value is larger than one, users should be able to select 

more than one item from a list more often. With more recommendations selected each time, 

users should have to scan fewer lists and click fewer items. 

Since the M and relative manual entry values are significantly lower than one in the 

hierarchical case, we judged the hierarchical to require less effort than manual in Usenet. 

Moreover, since all metric values in the hierarchical approaches are either the same or less than 

values in the corresponding flat approaches, we judged that hierarchical recipient 

recommendation to be lower effort than flat recipient recommendation in Usenet. Therefore, we 

claim that we have provided evidence that addressing newsgroups in Usenet with hierarchical 

recipient recommendations requires less effort than manually addressing newsgroups or using 

flat recipient recommendations.  

6.7.1.2. STACK OVERFLOW 

The results for flat recipient recommendation for specifying tags in Stack Overflow are 

shown in Table 23. As with the results from other systems, both sets of tables contain both the S, 

C, and M values calculated from precision and recall and the GOMS model results. Again, A and 

S are not reported because in flat recommendations A is always 1.0 and S is equal to R.  Also, as 

before with the experiments in Usenet, we tested against the null hypotheses that each of the 

GOMS model metrics’ value was equal to 1.0 using sign tests and paired Student t-tests. All null 

hypotheses were rejected with p < 0.05 ad a Benjamini-Hochberg adjustment with FDR of 0.05. 

As in Usenet, since we did not have separate data by account in Stack Overflow, we did not have 

multiple P and R values to form a distribution and therefore could not check against that null 

hypotheses that P and R are 0.   
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Unlike using such approaches for addressing email addresses in email messages or 

newsgroups in Usenet posts, subset-based approaches required more M and relative manual 

entries than intersection-based approaches when specifying tags in Stack Overflow.  This 

indicates that intersection-based methods outperform subset-based ones, which is the opposite to 

the results found in email or Usenet. 
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The relative failure of the subset-based approaches may be attributed to the strict limit on the 

number of tags allowed to be associated with a single question. In Stack Overflow, questions 

may have at most 5 tags. Comparatively, email and Usenet have no such restrictions on the 

Table 23. Flat recipient recommendation results in Stack Overflow 

 
Ranking Half Life Precision Recall C M 

Top Contact Score 
best precision 1.0 years 0.091 1.000 0.091 0.909 

best recall 2.0 years 0.091 1.000 0.091 0.909 

Intersection Group 

Count 
- N/A 0.226 0.991 0.224 0.776 

Intersection Group 

Score 

best precision 1.0 hours 0.230 0.991 0.228 0.772 

best recall 2.0 years 0.230 0.991 0.228 0.772 

Intersection 

Weighted Score 

best precision 1.0 days 0.232 0.991 0.230 0.770 

best recall 2.0 years 0.232 0.991 0.230 0.770 

Subset Group 

Count 
- N/A 0.245 0.311 0.076 0.924 

Subset Group 

Score 

best precision 1.0 minutes 0.259 0.313 0.081 0.919 

best recall 2.0 years 0.259 0.313 0.081 0.919 

Subset Weighted 

Score 

best precision 1.0 minutes 0.263 0.312 0.082 0.918 

best recall 2.0 years 0.258 0.313 0.081 0.919 

 

(a) Precision and Recall based metrics 

 
Ranking Half Life 

relative 

scans 

relative 

clicks 

relative 

manual 

entries 

relative switches 

between 

mouse/keyboard 

Top Contact Score 
best precision 1.0 minutes 0.100* 0.093* 0.907* 0.131* 

best recall 1.0 hours 0.100* 0.093* 0.907* 0.131* 

Intersection Group 

Count 
- N/A 0.989* 0.230* 0.770* 0.289* 

Intersection Group 

Score 

best precision 1.0 hours 0.989* 0.234* 0.766* 0.294* 

best recall 2.0 years 0.989* 0.234* 0.766* 0.294* 

Intersection Weighted 

Score 

best precision 1.0 days 0.989* 0.236* 0.764* 0.296* 

best recall 2.0 years 0.989* 0.236* 0.764* 0.296* 

Subset Group Count - N/A 0.367* 0.087* 0.913* 0.110* 

Subset Group Score 
best precision 1.0 minutes 0.368* 0.091* 0.909 0.116* 

best recall 2.0 years 0.368* 0.091* 0.909* 0.116* 

Subset Weighted 

Score 

best precision 1.0 minutes 0.368* 0.092* 0.908* 0.119* 

best recall 2.0 years 0.368* 0.090* 0.910* 0.116* 

* indicates better than worst case with p < 0.05 using both a sign test and paired Student’s t-test  

 

(b) GOMS model metrics 
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number of email addresses or newsgroups, respectively. In fact, as mentioned previously in 

Table 20, we observed messages with high numbers of recipients in all other data sets. 

Recall that the driving motivation for the development of our hierarchical approach was the 

success of the subset-based approaches over intersection-based ones. The relative success of a 

subset-based approach indicates that groups of recipients can be organized into a hierarchy, 

where some groups contain others. Since such a success did not occur in the Stack Overflow 

data, it is likely that our hierarchical approach would be less effective. 

This line of reasoning is supported by our hierarchical testing in Stack Overflow, which is 

shown in Table 24. As described previously, the A value in this table denotes the average 

number of individual recipients selected with each click of a recipient recommendation list. In 

Stack Overflow, this value is not much larger than 1.0 for hierarchical recommendations. 

Comparatively, hierarchical recommendations in email and Usenet yielded A values much higher 

than 1.0. These values of A indicate either that recommended individual tags were rarely 

grouped together or that grouped tags were rarely useful for specifying the ideal set of tags.  In 

either case, these particular A values indicate there are few good hierarchical groupings. 

This lack of good hierarchical groupings is supported by the S, C, and M values in Table 

24(a) and the GOMS model metric values in Table 24(b). None of these values differ from their 

flat recipient recommendation counterpart by a large magnitude. In fact, we were unable to reject 

the null hypothesis that these values were less than the flat approach in most cases. 
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Despite the fact that the hierarchical approaches did not outperform flat counterparts, it is not 

evident that hierarchical approaches underperformed their flat counterparts. Furthermore, as the 

tables indicate, M and relative manual entries values are below 1.0, with relative manual entries 

being significantly below one according to our t-tests. These results relative to manual and flat 

recommendations indicate that hierarchically-grouped flat recommendations tend not to require 

more effort than manual and that hierarchically grouping flat recipients does not detract from the 

benefits of flat recommendations and tend to only add benefits. When combined with the results 

from Usenet data, we claim the following sub-thesis:  

Table 24. Hierarchical recipient recommendation results in Stack Overflow 

 
Ranking Half Life Precision Recall A S C M 

Intersection Group 

Score 

best precision 1.0 weeks 0.225 0.991 1.039* 0.982 0.221 0.770 

best recall 1.0 weeks 0.225 0.991 1.039* 0.982 0.221 0.770 

Intersection 

Weighted Score 
best precision 1.0 weeks 0.226 0.991 1.038* 0.982 0.222 0.769 

 

Subset Group 

Score 

best recall 2.0 years 0.226 0.991 1.038* 0.982 0.222 0.769 

best precision 1.0 minutes 0.258 0.312 1.006* 0.312 0.081 0.919 

 

Subset Weighted 

Score 

best recall 0.5 years 0.258 0.312 1.006* 0.312 0.081 0.919 

best precision 1.0 minutes 0.261 0.312 1.006* 0.312 0.081 0.918 

* indicates A is not equal to 0 with p < 0.05 and null hypothesis was rejected with FDR of 0.05 

 

(a) Precision and Recall based metrics 

 
Ranking Half Life 

relative 

scans 

relative 

clicks 

relative 

manual 

entries 

relative switches 

between 

mouse/keyboard 

Intersection Group 

Score 

best precision 1.0 weeks 0.983* 0.229* 0.765 0.294 

best recall 1.0 weeks 0.983* 0.229* 0.765 0.294 

Intersection Weighted 

Score 
best precision 1.0 weeks 0.983* 0.231* 0.764* 0.296 

 

Subset Group Score 

best recall 2.0 years 0.983 0.231 0.764 0.296 

best precision 1.0 minutes 0.368 0.090 0.909 0.116 

 

Subset Weighted 

Score 

best recall 0.5 years 0.368 0.090 0.909 0.116 

best precision 1.0 minutes 0.368 0.092 0.908 0.119 

* indicates better than flat recommendations with p < 0.05 using both a sign test and paired Student’s t-test 

 

 (b) GOMS model metrics 
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6.8. CONCLUSION  

In this chapter, we have made several related contributions. We have (a) classified existing 

email prediction schemes into content and group-based; (b) defined new metrics for capturing 

the user effort required to scan, click, or manually enter a recipient; (c) compared the existing 

schemes using new and old metrics; and (d) identified parameter values for the group-based 

schemes that gave the best results. In addition, we have described and evaluated new algorithms 

that (a) extend content-based prediction with direction and time; (b) combine the extended 

content-based prediction with group-based prediction; and (c) convert individual prediction lists 

created by a group-based prediction into a tree in which arbitrary nodes can be selected by the 

user. Their evaluations lead to several conclusions. (1) Group-based prediction algorithms 

perform far better than content-based ones. (2) Combining content and group into a single 

algorithm outperforms the results of content-based predictions, but ultimately fails to achieve 

better results than the best cases of group-based predictions. (3) An intersection-based treatment 

of seeds in prediction performs worse than a subset-based, which implies a hierarchy of groups. 

(4) Grouping individuals into a hierarchy leads to a significant reduction in user effort with 

respect to scanning lists and clicking correct predictions in email and Usenet. (5) Grouping 

Sub-Thesis X: Sub-Thesis X: Hierarchical Usenet and Stack Overflow Recipient 

Recommendation 

It is possible to generate hierarchically-grouped recommendation lists for 

addressing recipients in Usenet and Stack Overflow such that they will require the 

same or less user effort than flat recommendation lists and less effort than 

manually addressing recipients in terms of scans of recommendations lists, 

selected recommendations, manually entered individuals, and switches between 

mouse and keyboard.  

 



 

252 

 

individuals from a flat list into a hierarchy in Stack Overflow does not reduce user effort with 

respect to how often users must scan or click correct predictions, but it does not increase this 

effort either.   
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7. PREDICTING RESONSE TIME 

Even with named groups and ad-hoc recommendation lists, users may have multiple 

alternatives in terms of with whom they may share some piece of information. In many cases, 

users do not know the exact set of other users with whom to share ahead of time, but they may 

still want to ensure that they do not share with too many other users and that they share with 

enough people to properly disseminate the information.  For example, users may want to 

conform to the principle of least privilege to avoid unintended consequences that may come with 

sharing with too many people [94].  Moreover, by restricting the number of users with whom to 

share, users exert less effort, because they are required to look up and enter fewer user names. 

To illustrate, consider our earlier example of a student Chris who wants to email his 

classmates about collaborating on a class assignment in section 6.1.  He has already addressed 

Alice, Bob, and Chris, but he is now unsure if he should share his request with more of his 

classmates. He knows that if he shares with too many people, his group of collaborators may 

become large and unwieldy. However, he wants to ensure that he has addressed enough people to 

create a group before the assignment deadline and that his collaborators will be knowledgeable 

enough to contribute to the assignment. 

As the example shows, if users have multiple alternatives in terms of with whom they may 

share some information, they may use other goals to select among those alternatives. For 

example, users may want to ensure that an expert sees their shared information, that a response 

will occur in a timely manner, or that a question is sufficiently answered with a response.  In 

these cases, users will attempt to determine if the recipients with whom they have already 
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decided to share some information is sufficient to address their goals.  However, assessing 

whether a goal will be met can be a difficult task requiring high effort task. In our example 

student Chris’s case, he may have to look through or remember a large number of past 

communications with a large number of his classmates to determine if they are both 

knowledgeable about the assignment topic and will respond quickly. 

It is possible to reduce these costs by recommending whether a given set of recipients would 

meet such goals.  If such recommendations are reasonably accurate, users can make reasonable 

decisions about whether a set of recipients is sufficient to achieve their goals without manually 

making the assessment themselves. We strove to help users determine if a goal would be met by 

predicting if and when a response will occur for set of recipients and a piece of shared 

information.  We chose this focus, because past work has already largely covered other goals like 

identifying experts [43,82,108] and determining if a question is answered sufficiently [2]. 

Moreover, response time predictions are applicable for a wide variety of cases in both email and 

communities. For example, if users know a response will occur in a timely manner, they may be 

able to determine if they will receive an answer to a vital question before a deadline, if others 

will find their ideas interesting and/or helpful.  Also, in cases like Stack Overflow, a response 

can grant a user higher privileges or status, so users may wish to know when such a change in 

privilege or status may occur. 

Predicting response times is a largely unaddressed research area, with two exceptions from 

Avrahami & Hudson [11] and Wang [110] in 2.6.2.2.  As discussed, these pieces of past work 

were successful in using machine learning techniques to generate such predictions.  However, 

their work had certain limitations.  Avrahami & Hudson designed and tested their approach for 

the IM domain, and not the email or communities domains towards which we are targeting our 
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work.  IM differs significantly from our targeted domains, and thus their approach may not be 

applicable in these more asynchronous domains. In the case of Wang’s work, this work relied 

heavily on features that could not be extracted automatically and needed to be extracted 

manually.  Such extraction is not feasible in large scale systems, such as the case of Stack 

Overflow, which would require manually extracting features for over 3 million questions. 

Our goal is to go beyond this work to make response time predictions in our target domains.  

When making such predictions it is useful to determine cases when users would find response 

time predictions helpful.  To our knowledge, no piece of past work has directly determined such 

cases.  Moreover, to our knowledge, no work has determined acceptable error rates for response 

time predictions.  Such determinations about error bounds may be important for the proper 

acceptance or rejection of prediction models. 

For example, consider if response time prediction models are chosen and constructed based 

on the assumption that a model is bad if it generates predictions that exceed an absolute error 25 

ms with respect to the true response time, because 25 ms has been found by past work to be the 

minimum latency that is perceivable by users [56,57].  Such an assumption may be too strict and 

cause the rejection of models that would still generate useful predictions.  

To illustrate, consider if students receive predictions that their homework questions to a class 

listserv will receive responses within 1 minute.  If these responses actually arrive in one minute 

and 100 ms, the predictions have a higher error than this perceivable threshold of 25ms.  Thus, 

the differences between predicted and actual response times are perceivable by users, and the 

predictions are therefore judged as bad by this criterion.  However, it is not likely that the 

students’ reactions to these predictions would change if the predictions showed less error.  In 

fact, the predictions are likely to be helpful to students, because students would likely not take 
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some additional action, such as switching to a different task or asking the same questions 

elsewhere. 

Therefore, before determining appropriate methods of generating response time predictions, 

we first need to determine both when response time predictions are useful and what the 

acceptable error bounds are for such predictions. 

7.1. USEFULNESS AND ACCEPTABILITY OF RESPONSE TIME PREDICTIONS 

To perform this analysis about the usefulness and acceptability of response time predictions, 

we included a survey as a part of our email user study first described in section 4.3.3.1.  After we 

had collected participants’ email message data, and while the participants were reviewing the 

information we had collected, we presented users with a survey about response time predictions. 

This survey was made up of two different parts, a message-specific portion and a general-answer 

portion.  These two sections served two different goals.  The first was to determine acceptable 

error bounds for response time predictions in specific messages and the second was to obtain 

general qualitative data about when response time predictions would and would not be helpful. 

7.1.1.1. MESSAGE-SPECIFIC SURVEY PORTION 

The message-specific portion was only displayed to users that had shared data about 

recipients’ full email addresses from their messages and the subject lines of messages.  For each 

of these accounts, we sorted all threads that had at least one response into 1 of 6 categories.  

These categories were defined by how long it took to receive the first response after the first 

message was sent: 0 to 1 minute, 1 to 30 minutes, 30 minutes to 1 hour, 1 hour to 1 day, 1 day to 

1 week, or greater than one week.  From each category, we randomly selected a thread and 

displayed the dates, senders, receivers, and subject lines for first and second message in that 

thread to the user.  One such thread from one such category is shown in Figure 44. 
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Figure 44. Example thread presented to the user in the survey 

As the figure also shows, alongside each of these message pairs, we offered the option to opt 

out of answering questions about a pair of messages.  This was to allow users to avoid answering 

questions about possibly private and sensitive information.  If the users chose not to opt out, they 

could answer two questions about the types of predictions might be helpful.  The first asked if it 

would have been helpful to know if a response was coming, and the second asked if it would 

have been helpful to know when the response would have occurred.  Overall, participants 

answered questions about 27 different messages. 

The results of these questions are shown in Figure 45.  As shown in the figure, participants 

indicated over 30% of the displayed messages would benefit from predictions about if or when a 

response would occur.  Moreover, more messages would benefit from predictions about if a 

response would occur than when one would occur. 

 

Figure 45. Survey results for helpful types of response prediction  

0.458 

0.305 

Want to know response will occur Want to know response time
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In cases when participants indicated that predicting when a response would occur, they were 

also presented with a third question “Would the response time still be helpful if it were off by 

(Please select "Yes", "No", or "Don't know" for each of the following)”.  The user was then 

presented with six different possible error values (1 minute, 5 minutes, 30 minutes, 1 hour, 1 day, 

and 1 week), and for each error they could select “Yes”, “No”, or “Don’t Know”. 

This would allow us to correlate error values with actual response times. Our goal was to see 

if the acceptable error changed as the actual response time changed. As Figure 46 indicates, a 30 

minute error was acceptable in most cases.  With slightly less than half of messages were marked 

as having an acceptable error threshold of 1 hour. Error thresholds of 1 day and 1 week were 

acceptable for a significantly fewer number of messages. 

 

Figure 46. Distribution of messages with acceptable response time error sizes 

Figure 47 plots these acceptable error sizes in relation to the actual response times of those 

messages.  For each acceptable error size, we generate a box-and-whisker plot of the actual 

response time (in hours).  In these box-and-whisker plots, the bottom horizontal line represents 

the minimum value, the second horizontal line represents the 25
th

 percentile, the third represents 

the median value, the fourth represents the 75
th

 percentile, and the top horizontal line represents 

the maximum value. 

As shown in the figure, there is little change in these box-and whisker plots for error sizes of 

1 minute, 5 minutes, and 30 minutes.  However as the acceptable error size increases to 1 hour, 

0.667 0.630 0.556 0.481 

0.222 
0.037 

1 minute 5 minutes 30 minutes 1 hour 1 day 1 week

Acceptable error size 
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the maximum, 75
th

 percentile, and median of actual response times all markedly increase in 

value.  For an acceptable error of 1 day, these three measures show an even larger increase in 

growth.  However, only one message had an acceptable response time error of 1 week, and the 

true response time of this message was over 100 hours or approximately 4 days. 

 

Figure 47. Correlation of acceptable error by actual response time  

These results provide evidence that not only predicting response time is useful, but also that 

the acceptable error of response time predictions changes based on the actual response time of 

messages.  In other words, it is likely that the acceptable error changes in scale to match the scale 

of the actual response time. 

While the answers to the message-specific questions shed light on many issues, they do not 

give any qualitative information about when predictions about response time may be useful.  To 

provide such qualitative answers, we turned to the second, general-answer portion of our survey. 
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7.1.1.2. GENERAL ANSWER SURVEY PORTION 

In the general answer portion of the survey, we asked users about when they cared about 

responses, when they may find response time predictions helpful or harmful, and how they might 

react to response time predictions.  The full list of questions and responses is listed in 

APPENDIX A and APPENDIX B, and for each question, we allow users to select from a list of 

options, provide their own additional answers, and expand on their answers. 

These questions were general in nature and not dependent on any information from specific 

email messages.  This meant, unlike the message-specific portion of the survey, participants were 

not required to complete any other portion of the study or survey.  Therefore, we allowed any 

users who wanted to contribute to our study but did not wish to submit email message 

information the ability to complete this portion of our study.  However, this portion of the study 

was higher effort for many users, because it required careful though and construction of free 

form responses.  Ultimately, we had 16 participants complete the general answer portion of the 

survey. 

The first question of our survey dealt with a logical motivation for response time predictions, 

the need to receive responses quickly enough to ensure some deadline is met.  Participants were 

asked about when they experienced deadlines related to an email or forum message or post. 

Interestingly 100% of participants in this portion of the survey had sent messages or posts where 

they needed responses quickly enough from classmates and colleagues to complete some 

upcoming project.  Some, but not all, of participants also needed responses prior to some 

deadline related to scheduling meetings or clarifying assignments or projects.   

When asked to expand on their answers, participants could point to distinct instances about 

when such deadlines had occurred, such as paper or assignment due dates, grading 
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assignments/quizzes, changing plans minutes prior to a meeting, course scheduling, and 

removing holds from the Registrar’s office. 

The participants’ response were much more varied when they were asked how they would 

respond if, in these deadline situations, a response time prediction was made such they 

determined a response would not occur quickly enough.  No single action was taken by the 

majority of the participants, though every participant took at least some action.   

The most common reaction was to use some other means other than email or forums to 

receive a response, and the least selected reaction, not sending the message or post, was only 

selected by one person.  This may indicate that users would still send the message or post based 

on the probability that the predictions were wrong.  This is further supported by the participants’ 

reasoning behind their answers. Participant 2 stated “Usually, I would send it anyway in case 

they responded quickly enough”, and Participant 16 stated “If I needed a response I would still 

hope that I would get one.” These results support the claim that response time predictions are 

useful, because all users indicated that they would change their actions based on the information 

provided by such predictions.   

Moreover, our participants did not seem to be concerned with least privilege.  By sending the 

message anyway, it indicates that they are not concerned about unnecessarily sharing private 

information.  Furthermore, no participants indicated they would specifically remove recipients to 

avoid sharing private or sensitive data by giving them the right to read messages.  Rather, they 

would only remove late responding recipients in order to “not bother” their recipients. 

Interestingly, when asked what other means to which they may turn in order to receive a 

quick enough response, all participants who were asked this question specified that they would 

send an instant message (IM).  Moreover, Participant 2 equated IM with in-person 
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communication, which is a synchronous collaboration method, by stating that they would “try to 

track someone down either through IM or in person.”  This supports the previous claim that 

while IM allows asynchronous collaboration, collaboration through IM is typically expected to 

be synchronous.  

In addition to using response time predictions to assist with meeting deadlines, we also asked 

our participants for another use of response times, detecting when our participants had forgotten 

to respond to some message.  We asked when it would be helpful to predict how our participants 

would take to respond to a message and alert them when they had not responded in that time 

frame.  Less than half of the participants said this would be helpful in any situation, and the most 

selected of our pre-constructed options was to ensure they would not miss some opportunity.  

However, three participants specifically mentioned that it would help address any forgetfulness 

when it came to responding to messages even though this was not one of the options we had 

specifically offered.  This indicates that if a similar study were conducted in the future, it should 

be included as a pre-specified option.  

Finally, we asked participants about when response time predictions may be harmful.  In this 

way, we could better identify when not to generate predictions.  Half of the participants felt that 

incorrect response time predictions would lead to people taking incorrect actions or having 

unreasonable expectations.  A common theme amongst many of the participants was also a 

concern of privacy.  Participants expressed concerns that others would become aware of their 

habits and be able to detect when they were ignoring others or lead to unnecessary pressure to 

respond.  Moreover, participant 8 expressed the concern that the amount that services like 

Facebook track users was already “creepy”, and email was a “haven” from such tracking. 
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Based on the results of this general-answer portion of our survey, we developed the 

following conclusions for our response time predictions.  First of all, users tend to find predicting 

when a response will occur as more helpful than predicting if a recipient has forgotten to respond 

to a message.  Therefore, our efforts will be targeted at the former rather than the latter.  

Furthermore, the goal of such predictions is not to suggest that users not send a message or 

remove recipients from a message, but to help them decide whether to also contact recipients 

through other means. Finally, such predictions should seek to avoid giving incorrect predictions 

by avoiding predictions that are unachievable or unreasonable predictions that are achievable but 

involve unreasonable tradeoffs.  This can be achieved by ensuring that predicted response times 

are on the same scale as actual response times, as the message-centered portion of this study 

indicated. 

7.2.  ANALYSIS OF RESPONSE TIMES DISTRIBUTIONS 

Intuitively, good predictions that match the scale of actual response times will also follow 

observed distributions of response time.  For example, if the 90% of messages receive a response 

within 1 minute, a good prediction scheme would not predict a different distribution, such as 

predicting that all messages will take more than a week to receive a response.  By properly 

analyzing distributions of response times, it may also be able to better identify features that are 

good predictors of response time.  Therefore, we analyzed response times in order to generate 

better response time predictions. 

For this analysis, we chose to analyze the Stack Overflow portion of the Stack Exchange 

public data dump [113], because it is explicit which messages are responses to other messages 

and for some messages it is possible to determine users are explicitly seeking a response.  In 

Stack Overflow, messages can be one of three types: questions, comments, or answers.  Threads 
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of messages in Stack Overflow always start with questions.  A question explicitly seeks a 

response answer message but cannot be a response to another message.  An answer can only be 

the response to a single question and have a pointer to the message to which it is responding.  A 

comment is an explicit response to either a question or answer, and it may be an implicit (and 

unlabeled) response to comments that occur before it.  A comment also has a pointer to the 

message to which it is explicitly responding.  Furthermore, unlike questions, no other type of 

message explicitly seeks a response comment, even though the content of other types of 

messages may implicitly seek one.  Therefore, it is not clear that predicting the time to a 

comment would be useful for users. 

Based on this analysis, we filtered the dataset to only contain question and answers.  By 

excluding comments, we could make predictions about response times that users were explicitly 

seeking and therefore predictions that are most likely to be useful. 

The mean and median response times for these questions are shown in Table 25. Upon 

further analysis, the mean and median values show that the distribution of answer times for both 

earliest answers and accepted answers is skewed in one direction. As a result, the average 

elapsed time may not be a good representative of the entire distribution of times. While the 

median is also not the best metric to use for such a distribution, it is less susceptible to influence 

from extreme answer times (some of which are above two years).  

 

 

Table 25. Response times in the data set 

 Earliest Answer Elapsed Time 

(Hours) 

Mean 75.74 

Median 1.41 
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We also plotted a histogram of the distribution of response times for these pruned questions 

are shown in Figure 48.  The figure shows a peak in response times at approximately 5 minutes.  

Also, as the figure indicates, this distribution seemed closely match a log normal or an inverse 

Gaussian distribution, which are plotted alongside the response time distribution.  The fitted log 

normal distribution is defined as 𝑦 = exp(13.2648 +  0.927127 ∙ 𝑥) and the fitted inverse 

Gaussian is defined as 𝑦 = √
571108

2∙𝜋∙𝑥3
exp (

−571108∙(𝑥−867481)2

2∙(867481)2∙𝑥
). 

 

Figure 48. Distribution of response times in Stack Overflow 

It may be possible to make effective predictions about response time for Stack Overflow 

questions using either of the two distributions.  One could randomly choose a value from either 

distribution, and it would likely be closer to the true response time than a random number from a 

wholly different distribution. For example, it would most likely be less effective than a random 

value selected from the uniform distribution of all possible response times.   

One may be able achieve even better predictions by using features to influence the 

predictions.  Certain users may be more popular than others, and more popular users’ questions 

may be more quickly answered.  Similarly, certain tags may be more popular in that they are 
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watched by more people.  With more people watching popular tags, it is likely that a question 

with a tag that is more popular will receive a quicker response, because more people are 

watching the tag. 

These are just a two of many features that may be linked to response time and, thus, may 

serve as good predictors of response time.   Each of these threads contained many types of 

information that could be used for features.  For each of question, the data set included the 

question ID, question title, the creation date of the post, the creation dates of all answers given in 

the post, the owner of the question, and any subject tags associated with the question. 

Data about the answerers of the thread was also accessible, but we wished to predict answer 

times without prior knowledge about the responders. Thus, this information was not helpful in 

our evaluation of response time and response time predictions. We were concerned with 

predicting both the time until the first answer to a question, and the time until the accepted 

answer. 

Therefore, given the large number of possible features, it was our next goal to analyze and 

identify features in Stack Overflow that may be good predictors of response time. 

7.3. ANALYSIS OF FEATURES 

Rather than start from scratch when choosing features, we chose to use the wealth of 

knowledge from past work to focus on some of features that have shown to have links to 

response time in other systems.  Naturally, investigating all of these features is an arduous task 

beyond the scope of one paper. The features we investigated are as follows.  

7.3.1. TITLE LENGTH 

Teevan, Morris, and Panovich [106] investigated the effects of limiting the number of 

sentences in a post. Their results indicated that posts that were only one sentence long achieved 
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faster responses than posts that were longer. Analysis of the number of sentences and words in 

Stack Overflow does not work because Stack Overflow questions often contain snippets of code 

which cannot be translated into words and sentences. They could be translated into program units 

such as lines, variables and functions. Instead, we used a simpler feature - the title length in 

words - to see whether longer post titles resulted in faster or slower answers.  

 

Figure 49. Median elapsed times and title lengths 

We found no direct correlation between title lengths and elapsed times of either type.  

However, the distributions of elapsed times tended to change systematically over different title 

lengths. Upon closer inspection, we found that the median elapsed time shares a strong quadratic 

relationship with the title length in words. This relationship amongst the medians is shown in 

Figure 49. As evidenced by the 𝑅2 value in the figure, we found that a strong association 

between median elapsed times and title length. 

7.3.2. PUNCTUATION 

Teevan et al. [106] found that explicitly framing social networking posts as questions rather 

than as statements generated faster responses. We wanted to investigate the impact of 

punctuation on response times. Post titles were checked for occurrences of punctuation such as 
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question marks, periods, exclamation points, semicolons, and others that signify the finishing of 

a thought. Contrary to the findings in Teevan et al. [106], the presence of punctuation did not 

lead to significantly faster response times in Stack Overflow posts. The difference between the 

median answer times for those posts that contained punctuation and those that did not were 1.49 

minutes and 1.61 minutes for earliest answers and accepted answers, respectively. Moreover, the 

specific presence of question marks also did not lead to significantly faster response times, with 

the median differences between questions that contained question marks and questions that did 

not amounting to 3.25 minutes and 5.13 minutes for earliest answers and accepted answers, 

respectively.   

There may be several reasons for this result. For one, post titles are often not framed as 

complete thoughts. Question marks may have had no impact because of a possible underlying 

assumption that those who post on Stack Overflow seek to have a question answered. This 

differs from the general social networking atmosphere in which it is unknown whether posters 

are asking questions in their status or simply making  statements. 

7.3.3. TIME OF DAY  

Avrahami and Hudson [9] found that both the day of week and the time of day influences 

response speed in instant messaging (IM) conversations. Specifically, they found that 

responsiveness improved during the morning hours and at night compared to the afternoon.  

To test this feature in Stack Overflow, we extracted the time of day and the day of week 

according to the UTC time zone, and compared against response times. In the case of time of 

day, we took the medians of accepted and earliest elapsed answer times and plotted them against 

the hour of posting, which is shown in Figure 50. The x-axis shows the hour number, where hour 
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0 represents 12:00 AM. For the day of week analysis, we plotted a bar chart of the median 

elapsed times by the day of week, which is shown in Figure 51. 

Contrary to Avrahami and Hudson’s findings, we did not observe that the day of week has a 

strong relationship with response time. The time of day seems to exhibit a pattern when plotted 

against both accepted and earliest answer elapsed times, and when fitted to a three degree 

polynomial curve, had a moderately strong correlation. However, the data seems to 

systematically rise and fall around this fitted curve, indicating that response times may be driven 

by multiple distributions rather than a single one. This is consistent with the fact that, unlike IM-

messages,  Stack Overflow posts (a) are directed at multiple people living in different work 

cultures and time-zones,  and (b)  do not contain “frivolous” conversations that are often 

relegated to non-work morning and night hours. Therefore, the distribution of response times by 

time day may differ base on the time zone of the answerer.  

It may be possible to find a better fit for these time-of-day data points with a higher order 

polynomial. However, this also increases the risk of over fitting the data and ignores the possible 

mixed-model nature of the distributions. Consequently, we did not use the time of day as a factor 

in our predictions.  

 
Figure 50. Elapsed time by hour of posting 
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7.3.4. SUBJECT TAGS 

The idea behind using subject tags on Stack Overflow is to gear a question toward a more 

specific audience. For example, a person may post a question relating to C++ and include the 

C++ subject tag so that people who generally answer question relating to C++ may view it more 

quickly. It could be that certain community groups on Stack Overflow simply respond to 

questions faster than other community groups do.  

This feature has not been heavily researched in past works on factors influencing response 

speed. It is suggested by the research of Arguello et al. [8], which showed that cross posting 

messages decreased response times. The median response times of some popular tags shown in 

Table 26 show that this is a promising direction as median response times for different tags show 

a large variance. The table also shows that use of more specific tags such as visual-studio-

2010/2008, ruby-on rails-3, instead of visual-studio or ruby-on-rails can dramatically reduce 

response times.  

 

Figure 51. Median elapsed times by day of week 
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Table 26. Median elapsed times by tag for some popular tags 

Tag Name 

Time to earliest answer 

(minutes) 

.net 6 

actionscript-3 19 

ajax 2 

algorithm 3 

android 4 

apache 29784 

api 3451 

arrays 2 

asp.net-mvc-3 4904 

asp.net-mvc 371 

asp.net 2 

bash 6 

c# 7 

c++ 5 

c 8 

class 220 

cocoa-touch 259 

cocoa 35 

codeigniter 733 

css 5 

database 12 

debugging 162559 

delphi 219 

django 333 

eclipse 4007 

entity-framework 25 

excel 374 

facebook 22 

file 6 

flash 12 

flex 6 

forms 62 

function 5 

git 404 

google-app-engine 189 

hibernate 13 

homework 2 

html 292558 

html5 13 

image 132 

ios 58 

ipad 32 

iphone 18 

java 53 

javascript 5 

jquery-ui 3 

jquery 4 

json 15 

linux 7 

 

Tag Name 

Time to earliest answer 

(minutes) 

list 2 

multithreading 181 

mvc 54 

mysql 22340 

objective-c 9 

oop 3 

oracle 12 

osx 796 

parsing 11 

performance 14 

perl 75 

php 25 

python 35 

qt 737 

query 1 

r 115 

regex 3 

ruby-on-rails-3 18 

ruby-on-rails 17 

ruby 41 

security 11 

silverlight 109 

spring 62 

sql-server-2005 13 

sql-server-2008 10 

sql-server 2 

sql 7 

sqlite 19 

string 10 

svn 32 

swing 146 

tsql 3 

unit-testing 14 

validation 47 

vb.net 1 

visual-studio-2008 1 

visual-studio-2010 8 

visual-studio 21018 

wcf 25 

web-services 7 

winapi 6 

windows-phone-7 1477 

windows 81 

winforms 37 

wordpress 1053 

wpf 26 

xcode 9 

xml 36 

zend-framework 13 
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7.4. PREDICTION MODELS 

Having determined candidate features that may be linked to response time, our next goal was 

to select models with which we could generate predictions.  We looked at four different types of 

models for generating predictions: a distribution based prediction model, a clustering model, and 

collaborative filtering model. 

7.4.1. DISTRIBUTION BASED MODELS 

The distribution-based model of response time is based on the previously touched on idea of 

using the distributions of response times to predict the response time for a particular post. 

Therefore, it was our goal to make predictions centered around replicating the distributions of 

response times observed in our analysis.  We divide these distribution-based models into two 

categories, baselines and predictions. 

7.4.1.1. BASELINES 

Baseline models seek to generate base level predictions against which to compare machine 

learning or data mining based models.  These models should not make use of any features that 

we previously identified or machine learning techniques that have been developed by ourselves 

or other work.  Instead, these baseline models should only rely on the distribution of response 

times. 

We developed four different baseline approaches based on our analysis of the response times, 

which fit into two different categories that are described below. 

7.4.1.1.1. Mean and Median Time  

Our first baseline approaches used the average/median elapsed times and predicted them 

constantly for all the test questions.  Intuitively, if response times are centered around a mean or 

median value, constantly predicting this value will yield better than random results.  Moreover, a 
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good prediction model that predicts different response times for different messages will yield 

better results than these constant predictions in terms of our previously described metrics. 

The issue with these mean and median baselines is that they allow for no variability in 

prediction. Questions that are not answered close to the constantly predicted value will always 

have predictions that are far from their true value. Therefor it is helpful in many cases to predict 

variable values for response time.  

7.4.1.1.2. Random value from Log Normal and Inverse Gaussian Distributions  

To provide a baseline that predicts variable value, we looked out previous results from fitting 

distributions. As previously mentioned, we observed that response times in Stack Overflow 

seemed to fit a log normal or inverse Gaussian distribution.  Therefore, it seems a reasonable 

method for predicting a response time for a future message is to randomly select a value from 

one of these distributions.  Since this does not rely on any features or machine learning 

techniques, we used this approach as a baseline against which to compare our other models. 

However, all these baseline approaches have the limitation in that they are not very intelligent.  

They do not take into account differences in messages to drive differences in response time 

predictions.  

7.4.1.2. PREDICTIONS 

As the response time is a continuous numerical value, it is natural to use regression to make 

non-baseline based predictions.  However, when we attempted to apply this model, our 

predictions were off by weeks and months in many cases. Our intuition was that more success 

may be afforded in predicting ranges of time rather than pinpointing time values. This is 

consistent with the fact if asked when users would respond to a message, they are likely to give a 

range rather than a precise time. More important, it is consistent with our goal of giving users an 
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idea of not the exact response times but the scales of the times.  Moreover, the work of Avrahami 

[11] had success predicting which response time bin an instant message fell into.  

Therefore, we partitioned the entire time range into distinct time bins. There were a few 

different ways we could have partitioned the entire time range. A constant time range method 

would partition the answer times into predetermined, equal-sized ranges, such as those shown 

Figure 52 for accepted-answer response times. We could then predict that any given question 

would be answered within the most probable time range. 

 

  

There are various problems when using this approach. It is not possible to determine the 

distribution of response times beforehand, and thus it is difficult to know exactly what time bin 

size should be used. If the size of the bin is too small, prediction methods may fail to adequately 

predict the correct time range though the difference in the actual elapsed time between post and 

answer may not be very significant. On the other hand, too large a bin size would yield the 

opposite effect. Arguably, constant time ranges also do not allow us to take into account the fact 

Figure 52. Equal sized bins 

1 2 3 4 5 6 7 
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that the size of a time range should be proportional to its limits - the difference between 10 

minutes and 20 minutes is more significant than the difference between 1 month and 10 minutes 

and a month and 20 minutes! 

Partitioning the time range into unequal time ranges allows one to use the entire time range 

and account for relative differences in time. However, we have to decide how these time ranges 

are defined. Statically defining time ranges allows one to use familiar time measurements 

(minutes, hours, days, etc.). However, these divisions are arbitrary, and a future work may be 

able to specifically discern the appropriate equivalence classes. Moreover, there may be an 

alternate structure in the dataset that statically-defined time ranges may not capture. 

 

Range 

Number 

Lower Time 

Limit 

Upper Time 

Limit 

1 0:00:00 0:02:51 

2 0:02:51 0:04:35 

3 0:04:35 0:06:46 

4 0:06:46 0:09:44 

5 0:09:44 0:13:59 

6 0:13:59 0:20:11 

7 0:20:11 0:29:26 

8 0:29:26 0:43:30 

9 0:43:30 1:04:54 

10 1:04:54 1:37:20 

11 1:37:20 2:26:10 

12 2:26:10 3:39:20 

13 3:39:20 5:28:19 

14 5:28:19 8:09:13 

15 8:09:13 12:00:33 

16 12:00:33 17:10:11 

17 17:10:11 23:44:38 

18 23:44:38 1 day 9:48:38 

19 1 day 9:48:38 1 day 22:57:00 

20 1 day 22:57:00 2 days 15:58:06 

21 2 days 15:58:06 3 days 17:17:02 

22 3 days 17:17:02 5 days 2:22:07 

23 5 days 2:22:07 6 days 17:14:26 

24 6 days 17:14:26 8 days 17:49:45 

25 8 days 17:49:45 1081 days 20:24:33 

 

Table 27. Response time cluster ranges 
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Instead, we used a dynamic partitioning approach to determine the time ranges. In order to 

automatically divide up the full time range, we used simple K-means clustering of the two kinds 

of times with k being given a somewhat arbitrary value of 25. Table 27 shows the resulting 

partitions for accepted answer elapsed times and earliest answer elapsed times.  As we see here, 

the time-range sizes increase with time. As mentioned earlier, this is a property we want in 

prediction – if we are optimizing relative error, then the size of the range should be proportional 

to the time.  Interestingly, all responses more than a day are put in the last range.  

Each question in the training data set and the test data set was placed into one of 25 time 

ranges according to the lower and upper limits of each time range. Then test messages were 

assigned to a particular time range, and the midpoint of that time range was predicted as the 

response time for that message. We used several different approaches to choose how each 

message was associate with a time range.  

7.4.1.2.1. Most Frequently Occurring Time Range 

This approach took the most frequently occurring time range for both accepted answers and 

earliest answers and predicted that every question would have its accepted and earliest answer 

within these two ranges. This approach is particularly promising given the skewed nature of the 

distribution of elapsed times. 

7.4.1.2.2. Weighted Random Choice 

The issue with the previous methods is that they allow for no variability in prediction. 

Questions that are not answered within the time range used for constant prediction will always be 

attributed an incorrect time range. In order to increase the probability that other time ranges will 

be predicted, we used a weighted random choice algorithm. The algorithm works similarly to a 

roulette wheel where there are different probabilities for the wheel to stop in a certain section. 
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For each question in the test set, a time range was drawn probabilistically from the existing 

distributions of time ranges for both earliest answers and accepted answers.  If, for example, 

there are 3 choices of time ranges with probabilities 0.1, 0.3, and 0.6 respectively of being 

chosen, a value between 0 and 1 would be randomly selected. The list of possible outcomes 

would be as follows: If the random value is between 0 and 0.1, choose the first time range. If the 

random value is between 0.1 and 0.4, choose the second time range. For all other generated 

random values, choose the third time range. 

This algorithm does not take into account features. We describe below variants that uses both 

tags and title lengths – the two promising features we found. 

7.4.1.2.3. Feature-based Weighted Random Choice 

The basic idea behind using features in a distribution-based approach is to compute not an 

overall distribution but multiple distributions for different discrete values taken by the features. 

Given our two features, this means computing different distributions for different tags and title 

lengths. In our evaluation, we used 25 different title lengths and the top 100 tags (though in 

reality, thousands exist on Stack Overflow).  

Creating a feature-based weighted random choice or most frequent time-range approach for 

title lengths is simple, as there is no possibility of a post containing more than one title length. 

Thus, we use the time range distribution corresponding to the title length of a post when applying 

the weighted random choice algorithm or choosing the most frequent time range. If a post 

contains a single tag, the tag-based approach works similarly, using the distribution for the post 

tag rather than the post title length.  

 In many cases, a post contained multiple tags, which means we have to somehow combine 

the results from multiple distributions. Our basic idea was to apply the notion of weights, to not 



 

278 

 

only the time ranges of each distribution, as in the weighted random choice algorithm, but also 

the time ranges returned using different distributions. Each distribution returns a time range with 

a certain probability of occurrence. We use these probabilities as weights in our choice. 

This approach raises two issues based on the fact that each predicted time range has a width 

(upper limit – lower limit). Which properties of a time range should be used in the weighted 

average – lower limit, upper limit, average of the two limits, or some other property? And what 

should be the width of the predicted range – the maximum of the widths of the combined ranges, 

the minimum, or some other value? 

We developed an elegant solution to this problem that has the characteristic that it does not 

predict an “artificial time range” – a time range not found by our clustering algorithm. As 

weights, it uses, not the absolute values of the limits of the combined time ranges, but the relative 

indices in Table 27, which have the property that increased indices are associated with higher 

limits. It then chooses a time range whose index is closest to the weighted index average. 

Suppose two tags produced time ranges 2 and 4 with probabilities (frequencies) 30% and 60% 

respectively. The weights here are 30/(30+60) = 1/3 and 60/(30+60) = 2/3. The weighted average 

of the time ranges is 2(1/3) + 4(2/3) = 3.333. This value rounds to 3, so that is the time range 

used.  

7.4.2. CLUSTERING BASED MODELS 

These distribution models are helpful in that they are likely to generate predictions that match 

the distribution of true response times.  However, a large drawback is that either they always 

predict the same value or they are non-deterministic.  The models that always predict the same 

value are mean, median, or most frequently occurring response range models.  Those that are 
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non-deterministic are the weighted random choice and featured-based weighted random choice 

models. 

As mentioned before, constant prediction of the same value is problematic because this 

inherently does not match the existing distribution.  As observed in section 7.2, not all messages 

receive a response in the same amount of time.  Moreover, a constant prediction of a single value 

ignores any helpful information that may be inferred from features such as tags or title length. 

A non-deterministic model is problematic, because it means that two different predictions 

from the same model about the same message sent under the same conditions can have entirely 

different values.  Intuitively, this does not match reality.  If the same model is used to generate 

two different predictions under the exact same conditions, logically the predictions should be the 

same, because there is no indication that the outcomes would be different. 

Therefore, to remedy these issues, we sought other models that would not have such 

drawbacks. As stated above, our goal was to give the user a good sense of the scale of the time of 

the expected response (minutes, days, weeks/months).  To do so, we looked at alternative 

methods for predicting arbitrary time ranges. 

To do so, we used clustering, which automatically sorts questions into clusters based on 

shared or similar features vectors whose response times define meaningful ranges. For our data, 

our feature vectors consisted of the asker, tags, and title length.  After identifying clusters from 

these feature vectors, we associated a cluster with a lower bound response time based on the 

minimum response time of training data found within the cluster. 

The next question was how to generate these clusters.  Two common approaches are K-

nearest-neighbors and k-means.  K-nearest-neighbors does not initially generate clusters, but 

generates them at prediction time for each feature vector based on the k nearest training vectors.  
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On the other hand, k-means sorts the training data into k clusters where each cluster has a mean 

feature vector.  Then the testing data is associated with a cluster based on the closest mean. Thus, 

the patterns in the data determine the predicted ranges rather than arbitrarily selected values. 

K-nearest-neighbors does allow more flexible clusters, because clusters can change based on 

the data requiring predictions. However, it also requires that all clusters contain the same number 

of feature vectors, where the reality may be a less even distribution of feature vectors among 

response times with some time ranges being associated with many past feature vectors, and some 

ranges being associated with very few. For this reason, we chose to use K-means.  Moreover, 

because we identified non-arbitrary, specific ranges ahead of time using K-means, this opens the 

door for future work to guide users to a specific range they have in mind, such as by posting to 

additional, more responsive communities or performing additional actions, like performing edits 

to clarify questions. 

7.4.2.1. K-MEANS 

We tested using the K-means while varying k from 2 to 25.  We then analyzed the 

effectiveness of the predictions in terms of the lower bounds we had generated.  We found 

almost all test data points were closest to a single mean whose associated lower bound was 0.  

This is a poor prediction scheme, since it predicts the same result for almost all responses despite 

a wide distribution of true values. 

To determine a better prediction approach, we performed further analysis on the means.  We 

found that while many points had the same closest mean, most did not have the same second-

closest mean. Moreover, these second closest means tended to have significantly different 

associated lower bounds.  Therefore, we sought to develop a novel approach that would make 

use of these multiple means and their closeness to a point requiring predictions. 
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7.4.2.2. WEIGHTED AVERAGE 

To make use of these multiple means, we developed an approach that performs a weighted 

average of predicted time-to-response lower bounds with the distance between a point and a 

mean serving as the inverse of the weight for the associated lower bound for that mean.  For 

example, suppose a simplified case where we had three mean feature vectors <2,2,2>, <3,3,3>, 

and <4,4,4> whose associated lower bounds were 1 second, 1 minute, and 1 hour, respectively, 

and we had a point <1,1,1> whose true time to the next response was 10 minutes. Using the 

simple weighting scheme specified above, we would generate the lower bound below, which is 

very close to our true value: 

(
1

√3
) (1 𝑠) + (

1

2√3
) (1 𝑚𝑖𝑛 ) + (

1

3√3
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1

√3
+

1

2√3
+

1

3√3

= 10.16 minutes 

However, in our evaluation, we found many cases where a mean used in an average had an 

outlying error so large that this simple weighting scheme could not compensate for the outlier.  

For example, if the above example also included the mean <20,20,20> with an associated lower 

bound of 1 year, it seems that this new mean is much further relatively from the point than the 

other means, possibly indicating the weight would be low enough to sufficiently reduce the 

effect of the large error.  However, the weighted average introduces significant error in the 

predicted lower bound, which would be calculated as 8.8 hours. This lower bound is now not 

only a large distance from the true response time, but has a significantly high error when 

compared to the true response time, making it a bad prediction. 

There are multiple ways to reduce the effect these outliers.  One way would be to limit the 

number of means used in a weighted average.  However, this may introduce some arbitrary 
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constant for determining the number of means to include that would not work well across a 

variety of systems.  For this reason, we did not use this approach 

Instead, we adjusted the formula for determining weights in our weighted average. Using this 

approach, we were able to adjust the slope of the weighting function such that means relatively 

close to a point needing a predicted response time had higher weights, while those relatively far 

away had weights that were essentially zero.  To achieve this desired slope, we used the below 

exponential function to achieve a weight w for a mean m when used to predict for point p: 

 ),(),(exp1

1

mpdistmedianmpdist
w

m


 

In this function dist(p,m) is the distance from the point p to the mean m, and 

mediammdist(p,m) is the median distance between p and any mean. This function is essentially a 

sigmoid where the weight drops significantly for any mean whose distance is greater than 

median distance.  Thus, means that have a distance relatively larger than most other means will 

be weighted lower. Using this weighted average formula we predicted average lower bounds 

using our previously determined K-means ranges.  

7.4.3. COLLABORATIVE FILTERING MODELS 

There are many other possible models that could be considered for making predictions about 

response time.  However, we noticed one intuition that guided the selection of one other 

approach for such predictions, response time is likely tied to popularity of messages.  Posts that 

are more popular will have lower response times and less popular ones will have a higher 

response times.  Therefore, response time can be thought of as ratings measure, and currently one 

approach has been more successful than others for predicting ratings, collaborative filtering. As 

mentioned previously, collaborative filtering has been used to successfully predict ratings of a 
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variety of types of items, such as Usenet posts [96] and Netflix films [62].  Therefore, it was our 

goal to apply collaborative filtering to predict response times. 

In order to use collaborative filtering we needed to identify types that mapped to users and 

items for a matrix of ratings.  In this matrix, the ratings for item i residing in column i, and the 

ratings user j gave are in row j. To differentiate users and items, consider the case of 

recommending movies using collaborative filtering.  In this case, the items were movies and 

users were the people watching movies.  The goal of these recommendations was to help people 

by finding movies they would most like to watch.  Thus, users do not change, but movies do. 

Using this, it is possible to generally classify any pair of features in collaborative filtering as 

items and users, where the user is the feature that less easily change values. 

We considered three different non-numeric features on which ratings may be based, the 

asker, the words in the question’s title, and the tags.  These three features can be form three 

different pairs, which are shown in the first two columns of Table 28.  

Table 28. Pairs for Collaborative Filtering 

User Item Max Possible 

Ratings 

Seen 

Ratings 

Asker Title Word 172,893,898,140 13,152,083 

Asker Tag 18,349,283,190 2,727,915 

Tag Title Word 8,684,313,386 8,673,187 

 

In general, there are two main types of collaborative filtering: user-based and item-based.  To 

illustrate consider a user U who needs a prediction for item I.  User-based collaborative filtering 

assumes there are enough users who have rated both item I and other items U has rated in the 

past that at least one other use can be found to be a close fit for U’s rating patterns to accurately 

predict how U will rate I.  Item-based collaborative filtering on the other hand assumes that some 

others users who have rated I have also rated at least one other item that U has.  These users can 

then be combined to form a prediction of how user U will rate item I.  



 

284 

 

As the example illustrates, item-based collaborative filtering works better with sparse 

matrices, and as Table 28 shows, all matrices for our chosen user-item pairs are sparse.  

Therefore, we chose to use item-based collaborative filtering. 

There many item-based approaches that could be used to predict response times.  Recall, the 

main hypothesis of this work is that collaborative filtering can make effectively prediction 

response times.  Therefore, we used relatively simply collaborative filtering approaches. In 

particular, we used Slope One, Euclidean Distance, and Pearson Correlation.   

Slope one attempts to predict ratings based on the average difference in ratings between users 

[64]. This relative distance between user u and v who have both rated the set of items I can be 

defined by the following formula: 

𝑟𝑒𝑙𝐷𝑖𝑓𝑓(𝑢, 𝑣) =  
∑ (𝑟𝑎𝑡𝑖𝑛𝑔(𝑢, 𝑖) − 𝑟𝑎𝑡𝑖𝑛𝑔(𝑣, 𝑖))𝑖∈𝐼

|𝐼|
 

This relative difference can then be used to predict the rating user u will give item i using the 

following formula: 

𝑆𝑙𝑜𝑝𝑒𝑂𝑛𝑒(𝑢, 𝑖) =  ∑
𝑟𝑎𝑡𝑖𝑛𝑔(𝑣, 𝑖) + 𝑟𝑒𝑙𝐷𝑖𝑓𝑓(𝑢, 𝑣)

|𝑈𝑠𝑒𝑟𝑠|
𝑣∈𝑈𝑠𝑒𝑟𝑠−𝑢

 

In comparison, both the Euclidean distance and Pearson Correlation approaches predict the 

rating of an item i based on the weighted average of past ratings for item i.  For weights, these 

approaches use the distance between the user u that needs a predicted rating and the user v that 

previously rated item i. 

To measure distance between users, both approaches treat each user as a vector of past 

ratings, and distance between users is computed as the distance between these vectors.  The 

Euclidean approach uses the Euclidean distance formula to compute this value, and Pearson 

Correlation uses the Pearson Correlation similarity value [96]. 
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We chose Euclidean distance because it is a standard and easily understood distance measure.  

We chose Pearson correlation, because it has been shown to be an effective predictive metric in 

collaborative filtering [96].  Moreover, it has been used as a baseline for other collaborative 

filtering approaches, such as Slope One [64]. 

From each of these models, we had predictions for each possible user-item pair.  However, 

each question may have multiple associated pairs. For example, a single question typically has 

multiple tags or multiple title words. To predict the response time of a message, we predicted the 

time as median time of message pairs. We chose this over the mean because it would tend not to 

have large changes in value because of outlier predictions. We also chose not to select the 

minimum value, because it may introduce unreasonable expectations about when an answer will 

arrive. Always choosing the minimum value may lead to choosing outlier minimum predictions 

for many messages, which in turn will likely yield an expectation of a response time that is much 

lower than that of the actual answer time.  As mentioned previously in section 7.1.1.2, this fear 

of unreasonable expectations was expressed as a potential harm by half of our survey 

participants. 

7.5. METRICS OF PREDICTED RESPONSE TIMES 

In order to properly evaluate these metrics, our next goal was to determine metrics for 

evaluating response times that match these requirements.   

One simple metric to display is the absolute error.  This metric provides a human parsable 

value.  If predictions are off two predictions have respective absolute errors of 1 minute and 1 

day, it is easy to see that the first prediction is the better one. 

However, recall that, according to the results of our survey, the acceptable error increases as 

the actual response time increases.  Based on these findings, it was our goal to predict response 
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times at the same scale (e.g. minutes, days, weeks/months) as the true response time.  Therefore, 

in addition to the absolute error, we were also interested in a new metric that measures the 

difference in scale between a predicted response time and an actual response time. Such a metric 

should capture, for instance, that the error in a predicted response time of 8 hours is more 

significant if the next response actually occurs in 1 minute than 1 day. 

One approach to defining this metric is to make it the relative error: 

|𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛|

𝑎𝑐𝑡𝑢𝑎𝑙
 

A relative error of 600% could be considered acceptable as it would give an idea of the scale 

(as defined above) of the actual response time.  Under this metric and threshold, if the actual 

response time is 10 minutes, then a prediction of 1 hour would be considered acceptable, since it 

gives the user the sense that a response will occur in the next hour. However, this example also 

illustrates a problem with this metric - a prediction of near zero time would also be considered 

acceptable.  In fact, a prediction of near zero time would always result in a relative error of less 

than 100%. Thus, this is a good metric when the response time is smaller than the predicted time 

but not when it is much larger. 

To avoid this issue, we could divide the max value of the prediction and actual time by the 

minimum value, as shown here: 

max(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, 𝑎𝑐𝑡𝑢𝑎𝑙)

min (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, 𝑎𝑐𝑡𝑢𝑎𝑙)
 

This would provide the amount by which the minimum needs to be multiplied in order to have it 

equal the maximum.  In other words, this provides the difference in scale.  However, such results 

are hard to compare graphically next to each other in one case.  For example, if the actual 

response time is 35 seconds, and three predictions are provided that are 30 seconds, 600 seconds 
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(10 minutes), and 100,000 seconds (a little over 1 day), the results of the above equation will be 

1.17, 17.1, and 2857, respectively.  If all three are plotted, the error of the result for 100,000 

seconds will vastly outweigh the first two predictions, and thus make them incomparable 

visually. Therefore, it is helpful to instead measure how many orders magnitude by which the 

prediction and true response time differ. To do so, we use a log of a ratio to define the metric, 

and refer to it as scale difference: 

log10
max(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, 𝑎𝑐𝑡𝑢𝑎𝑙)

min (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, 𝑎𝑐𝑡𝑢𝑎𝑙)
 

To illustrate, when the predicted response time is 8 hours, if the next response actually occurs 

in (a) 1 minute, the scale difference is 2.68, (b) 1 day, the scale difference is 0.48. The smaller 

the value of scale difference, the closer in scale the prediction is to the true response time and 

therefore the better the prediction. 

This metric can still be problematic in situations where the range of response times is 

extremely large. For example, in the Stack Overflow portion of the stack exchange data set, some 

questions received a response in a few seconds, while others took over three years to receive 

their first response.  If even a few predictions are off by the entire range, say by predicting the 

response will occur within a few seconds when in reality it takes over three years, the mean scale 

difference across all predictions can be pulled to unacceptable levels by these outlier predictions.  

Therefore, to help account for such issues, we reported the percentage of predictions that were 

within certain absolute error thresholds, i.e. the percentage of predictions within 10 minutes, 20 

minutes, 1 hour, 1 day, and 1 week.  Such values will not be heavily influence by outliers as in 

the case of mean scale difference. 
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7.6. METHODOLOGY 

To evaluate these three general types of models (distribution-based, clustering-based, and 

collaborative filtering), we performed 10-fold cross validation. We divided questions randomly 

into 10 different folds.  We then performed 10 experiments for each model, where each 

experiment had one fold withheld as the testing set and the remaining folds used as the training 

set.  
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7.7. RESULTS 

7.7.1. ABSOLUTE ERROR 

 

Figure 53. Absolute Error Results 

The results of our models in terms of mean absolute error are displayed in Figure 53, where 

error is measured in hours.  The worst models in terms of this metric included the log normal 

baseline, the inverse Gaussian baseline, both weighted random choice approaches, both 

clustering approaches, the Pearson Correlation tag & word collaborative filtering, and the Slope-
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One tag & word collaborative filtering approaches.  All of these models were judged as the 

worst, because all of these models had mean absolute error values around 250 hours or 

approximately 10 days. 

Given the median response time for all questions was approximately 1 hour and the peak of 

the response time distributions fell around 5 minutes, these are particularly bad results.  An 

absolute error of over 10 days is not on the scale of the majority of response times, and recall that 

our major goal was to predictions that are the same scale to the other predictions.   

The best results are not much better.  In the best cases, which were constantly predicting the 

median time or the most frequently occurring time range, the response times were on average 

~25 hours or approximately 1 day from the true time.  Given that the median and peak values in 

the distribution, these are not on a similar scale to the majority of the true response times. 

However, as mentioned previously, these results may not be indicative of the absolute 

goodness of these models, because they may be affected highly by outliers.  Moreover, in some 

cases, a high absolute error does not indicate that generally predictions tended to show a high 

difference in scale.  For example, if a question receives its first response over 3 years after it is 

first posted (as is case in some Stack Overflow questions), a prediction with an absolute error of 

10 days is not necessarily bad.  This prediction would be on the scale as the true time, and thus a 

good prediction. 

7.7.2. SCALE DIFFERENCE 

To better evaluate these models, we turned to the scale difference metric, which we had 

previously developed in section 7.5.  The results in terms mean scale difference are presented in 

Figure 54. 
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Figure 54. Scale Difference Results 
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The results for distribution based models are presented in Figure 54(a).  Of these approaches, 

the constant prediction of the most frequent range showed the lowest scale difference of 

approximately 2.4.  The other approaches had mean scale differences of 3.0 or higher.  

In terms of clustering approaches, the results of which are shown in Figure 54(b), k-means 

showed little variation in terms of scale difference, with some slight decrease in scale difference 

as k increased.  In this model, when k=2, scale difference started at approximately 5.9, and as k 

increased, it tended to approach a value of 5.0. 

Sigmoid-weighted k-means showed a much starker decrease in scale difference as k 

increased.  Initially, when k was 2, this scale difference had an extremely high value of 300.  

However, this immediately dropped to approximately 5.0.  Then, as k increased to 25, this value 

approached 2.7, which is close in value to the scale difference of the best performing 

distribution-based approach. 

Finally, in collaborative filtering models results in Figure 54(c), only Euclidean distance 

based models performed close to the best performing scale difference observed with constantly 

predicting the most frequent response time range.  These Euclidean distance approaches had 

scale errors ranging from 2.5 to 2.7.  The remaining collaborative filtering approaches showed 

much higher scale difference, ranging from 2.9 to 5.3.  These are closer to values of the worst 

performing distribution-based models, which we had already judged as worse than predicting the 

most frequent response time range. 

Therefore, we judged the most frequent time range, the sigmoid-weighted k-means, and the 

Euclidean distance collaborative filtering models to be best in terms of scale difference.  

However, as mentioned previously, these scale errors can be heavily influenced by outliers. For 

example, consider some of the questions that had actual response times of over 3 years.  Assume 
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that we predicted at the correct scale in all other cases except these particular ones.  Those 

particular cases of large outlier error may have large enough differences in scale to raise the 

overall mean scale difference.  

7.7.3.  PORTION WITHIN ERROR THRESHOLD 

To avoid these issues with the effect of outliers, we also evaluated these approaches in terms 

of the portion of predictions that were within some absolute error threshold.  In Figure 55, we 

report the percentage of predictions that display an error of under 1 minute, 1-3 minutes, 3-5 

minutes, 5-10 minutes, 10-20 minutes, 20 minutes – 1 hour, 1 hour – 1 day, 1 day – 1 week, and 

over week.  In this figure, these percentages are stacked on top of each other for each model and 

lower errors are darker in color. 
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Figure 55. Portion within error threshold results 
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minutes.  However, the log normal and inverse Gaussian are close in effectiveness to the most 

frequent time range, with both models yielding 55% of predictions within 20 minutes of the true, 

75% within 1 hour, and over 90% were within 1 day.   The next best distribution-based approach 

(feature-based weighted random choice) also was close, with 50% of predictions within 20 

minutes of the true value, over 60% within 1 hour, and over 90% within 1 day. This indicates 

that in terms of this metric, distribution based predictions perform with similar values to the 

baselines. 

In terms of clustering models, which are shown in Figure 55(b), k-means showed almost no 

variation in terms of the portion within any given error threshold.  In comparison, the sigmoid-

weighted k-means showed much greater variation.  Initially, as k increased, performance 

improved with more predictions showing less error, with the best case having 60.2% of 

predictions within 20 minutes of the true time at k=5 or 71.7% of predictions within 1 hour of the 

true time at k=8.  However, after k increased beyond these points, performance started to 

decrease.  When k reached 25, over 65% of predictions had an error over 1 hour.  

This indicates that, in their best cases, our tested clustering models performed similarly well 

to, but not better than, the most frequent time range prediction, which was the best performing 

distribution-based approach. 

In terms of collaborative filtering models, as shown in Figure 54(c), Slope-One models 

always performed worse than their corresponding Euclidean or Pearson Correlation models.  

Moreover, using tags and words as the users and items for these models always underperformed 

cases where the asker was treated as the user.   

The figure also illustrates that collaborative-filtering models using Euclidean distance 

performed better than other collaborative-filtering models.  In fact, these approaches worked 
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better than any other approach, with the best approach yielding over 62.9% of predictions within 

1 minute of the true response time, and over 78% were within an hour!  This is far better than 

any other non-collaborative filtering approach, including baselines.  The next best approach was 

the sigmoid-weighted k-means at k=7, where only 17.1% of predictions were within 1 minute of 

their true value.  Pearson correlation collaborative filtering approaches with the asker as the user 

also yielded similarly good results, where approximately 50% of predictions were within 1 

minute of the true value and over 75% were within an hour. 

Since these same collaborative filtering methods have been successful in past work 

predicting ratings of popularity, this success in predicting response times with the same methods 

indicates that the popularity of a Stack Overflow question may indeed be tied to the response 

time of the question.  We did not specifically evaluate this relationship between popularity and 

response time, but we provide evidence for future work to investigate it further. 

7.7.4. CHOOSING A BEST MODEL 

Because that Euclidean distance collaborative filtering models also performed well in terms 

of scale error, and Pearson correlation models did not, we judged Euclidean distance to be the 

better of the two.  Even though Pearson may have been heavily influenced by outliers, Euclidean 

methods results indicated that such outliers did not occur or occurred less often. Such outliers 

can cause frustrations amongst users when a predictions is vastly different from reality or when 

predictions cause unreasonable expectations, as stated in our survey results.  Since, Euclidean 

distance collaborative filtering models yield low scale difference and a large percentage of 

predictions with an absolute error under 1 minute (something not achieved by any other model), 

we judged it to be the best prediction model.   

This gave us our next sub-thesis: 
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7.8. APPLICATIONS BEYOND STACK OVERFLOW 

Given the success of collaborative filtering models in predicting response time for Stack 

Overflow questions, we sought to apply and test the same models in other systems, such as email 

or Usenet.  Both are examples of domains where users may expect response.  This is evidenced 

by past work [8,35] and our own study that was described in section 7.1.  Not only can responses 

in these systems help users ensure questions will be answered in a timely manner, as in Stack 

Overflow, but users may also use response times to accomplish other goals.  For example, they 

may use such knowledge about response times  to judge whether to further participate in a 

community [8] or to determine whether a recipient will complete a requested action [35]. 

However, these systems are not as strongly typed as Stack Overflow.  Each message or post 

is the same in each system, and not tagged as a question, answer, or comment.  Therefore, 

predicting the time to an answer response rather than a comment, such as another user posting “I 

have this same question too!”, is a more difficult task. 

Since, to our knowledge, we are the first to make such predictions in email or Usenet, we 

chose to not take on the task of filtering out comments.  Instead, we sorted messages into threads, 

and predicted the time from the first message in a thread to the second message in the same 

thread.  

These systems also contain messages that are slightly different from Stack Overflow in that 

they do not contain askers, titles, or tags.  However, as mentioned previously, these can be 

Sub-Thesis XI: Stack Overflow Response Time Predictions Hypothesis 

It is possible to use collaborative filtering to predict when a Stack Overflow question 

will receive its answers, such that the predicted time will be closer to the actual 

response time than random predictions, distribution based predictions, or predictions 

made using k-means clustering. 
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mapped to alternate features of root messages.  In both email and Usenet, the asker corresponds 

to the sender of a message, the tags correspond to the recipients of the message, and the title 

corresponds to the subject of the message.  Therefore, our corresponding user-item pairs were 

sender-recipient, sender-subject word, and recipient-subject word. 

To make and evaluate predictions with these user-item pairs, we used two data sets we have 

used to evaluate data previously in this thesis, our email user study first described in 4.3.3.1 and 

the 20 Newsgroups data set [118].  In each case, messages were sorted into threads.  To perform 

this sorting, we used the header fields Message-ID and References which occurred in both data 

sets in accordance with RFC 2822 [88].  Message-ID, of course, is a unique identifier for each 

individual message. References contains a list of ID’s of past messages in the current message’s 

thread.   

In the email user study, this sorting into threads was done automatically prior to any human 

accessing data to preserve privacy.  In this way, data could be anonymized such that no person 

could gain information about the identity of a message, which may then allow the inferring of 

sensitive information from the specific messages.  20 Newsgroups is a public data set, so no 

anonymizing was needed. Therefore, we sorted messages into threads after we had accessed 

them in the data set.  

We also considered evaluating our models using the Enron Email Corpus, which is a public 

data set of email messages.  However, it does not contain Message-ID and References headers.  

Therefore, the messages from this data set could not easily be sorted into threads to test the 

prediction models. 

Recall that in the email study would by default collect at maximum 400 threads.  However, 

participants could also edit this maximum value to collect a larger or smaller maximum number 
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of threads to share more or less data.  From our 31 users who submitted email message data, we 

collected 3600 threads, or an average of 116.1 threads per participant.  Of these messages, only 

12.0% of threads (or 432 total threads) contained more than one message, which meant that only 

these 432 threads could be used for the purposes of evaluating response time predictions. On the 

other hand, the posts in the 20 Newsgroups dataset could be sorted into 14,760 threads.  Of these 

threads, 3059 contained more than 2 posts and were used in our experiments.  

7.8.1. ANALYSIS FOR BASELINES 

As in the case of Stack Overflow, we analyzed the response times in the email and Usenet 

data sets. This would allow us to determine baselines to compare these collaborative filtering 

models against.   In the case of the data from the email user study, we found that the mean 

response time was 1.14 days and that the median time was 1.19 hours.  In the case of the 20 

Newsgroups dataset, the mean response time was 1.04 days, and the median time was 11.00 

hours.  In both cases, the mean was higher than the median, which suggests the presence of large 

response time outliers.  As mentioned previously, such large outliers may have a large effect on 

the mean absolute error or scale difference.  As in Stack Overflow, we used these mean and 

median values as baseline predictions for response time in both cases. 

Also, as we did previously with Stack overflow, we also sought to fit more complex 

distribution formulas that could be used as baselines that make variable rather than constant 

predictions. To determine these formulas, we plotted the frequencies of response times and 

attempted to fit a log normal or inverse Gaussian equation to these distributions.  The results of 

these fittings are illustrated in Figure 56.  As the figure shows, the log normal distribution more 

closely fits the frequencies for larger response times.  In comparison, the inverse Gaussian yields 

much lower frequencies than are observed for larger response times.  In the case of the email 
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data, both the log normal and inverse Gaussian showed poor fits for the very small response 

times. They yielded much higher frequencies for these small response times than was observed 

in data.  In the case of Usenet data, this poor fit for small response times was also true for the 

inverse Gaussian distribution.  However, the log normal displayed a much better fit, where the 

peak of the fit distribution closely matched the peak of the observed distribution.  

 
Figure 56. Distributions of response times in the email user study and 20 newsgroups 

(a) Email user study 

(b) 20 Newsgroups 
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Despite the fact that some of these fitted distributions were not as close matches as in Stack 

Overflow, they still give a strong preference for shorter response times than longer ones, which 

is true for the observed distributions, as evidenced by the distributions in Figure 56.  Therefore, 

these distributions are a better fit than truly random response times, and therefore a more 

effective baseline.  

As in the Stack Overflow case, we used these fitted distributions as baselines.  In the email 

user study data, the formula for the fit log normal distribution is 𝑦 = exp(8.407 +  2.87785 ∙ 𝑥), 

and the formula for inverse Gaussian is 𝑦 = √
113.647

2∙𝜋∙𝑥3
exp (

−113.647∙(𝑥−50132.4)2

2∙(50132.4)2∙𝑥
).  In Usenet data, 

the formula for the log normal distribution is 𝑦 = exp(10.4017 +  1.74268 ∙ 𝑥), and the inverse 

Gaussian is 𝑦 = √
1042.61

2∙𝜋∙𝑥3
exp (

−1042.61∙(𝑥−87621.1)2

2∙(87621.1)2∙𝑥
).  When combined with the mean and median 

baselines, this gave us 4 total baselines for each data set against which to compare the 

predictions from the collaborative filtering approaches.  

7.8.2. RESULTS AND ANALYSIS  

7.8.2.1. EMAIL  

The baseline and collaborative filtering results from the data from the email user study are 

shown in Figure 57 and Figure 58, respectively.  



 

302 

 

 

Figure 57. Baseline response time results for email user study 

In terms of baselines, constant prediction of the median response time yielded the lowest 

absolute error and scale difference (shown in Figure 57(a) and (b)), which matches observations 

about the best baseline in the Stack Overflow results.  Specifically, constant prediction of the 

median response time yielded a result mean absolute error of 2.20 days and a scale difference of 

1.80.   

However, in terms of portion of predictions which fell within some error threshold, that 

baseline that performed best randomly selected a response time from the fitted inverse Gaussian 

distribution.  In this baseline, over 20% of the randomly selected values were within 20 minutes 
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of the true response time.  Comparatively, the two next best approaches (either a constant 

prediction of median or a randomly selected value from the fitted log normal distribution) 

yielded values that were within 20 minutes of the true response time only ~10% of the time.  

In all metrics, the baseline that constantly predicted the mean value yielded relatively poor 

results.  It had a mean absolute error of over 2.6 days and a mean scale difference of over 429.9.  

Furthermore, over 70% of the time, the mean value was showed an error of larger than 1 day.  To 

illustrate how much worse than the other baselines this is, the other baselines yielded values that 

only had an error larger than 1 day for less than 36% of the time. 

Based on these rankings for these metrics, there is not one best baseline against which to 

compare the collaborative filtering results.  However, we could treat the constant prediction of 

the mean response time and the randomly selected value from the log normal distribution as poor 

baselines to compare against, because they did not yield the best results with respect to any of the 

metrics.  Therefore, we were left with the baselines that constantly predict the median response 

time or that randomly selected value from the fitted inverse Gaussian to judge the goodness of 

collaborative filtering results.  

Collaborative filtering did not perform better than either of these baselines in terms of mean 

absolute error, as illustrated in Figure 58(a).  In fact, no collaborative filtering scheme 

outperformed any of the baseline approach in terms of absolute error. In the best case of 

collaborative filtering, the slope one approach using the sender of a message as the user and 

recipient as the sender yielded a mean absolute error of 3.73 days, which is larger than an of the 

mean absolute errors observed in the baselines.  However, we did not immediately judge these 

collaborative filtering approaches as bad, because as mentioned previously, this absolute error 

metric does not give any sense of scale and may be influenced by outliers. 
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In terms of scale difference, which is shown in Figure 58(b), the best performing 

collaborative filtering approaches yielded results that were close to 2.3.  This is worse than the 

best performing baseline with respect to this metric (prediction of the median with a relative 

error 1.80), but it is approximately the same as the next best performing baseline, inverse 

Gaussian, which also performed best when measured in terms of percentage of predictions that 

were within some error threshold.  Intuitively, this may mean that these approaches will perform 

similarly well in terms of the same metric. 

As illustrated in Figure 58(c), this turned out to be the case.  All collaborative filtering 

approaches yielded approximately the same percentage of results that were within our tested 

error thresholds, and these results were worse than the best performing baseline in terms of this 

metric (the fitted inverse Gaussian distribution).  All collaborative filtering approaches yielded 

predictions that were off by over 1 day, 1 hour, or 5 minutes, approximately 38%, 80%, and 90% 

of the time, respectively.  Comparatively, 24.3%, 76.7%, 89% of the results from the inverse 

Gaussian baseline fell within the respective threshold.  
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Figure 58. Collaborative filtering response time results for email user study 

While these values do not perfectly match, they are close in value.  This indicates that the 

best performing collaborative filtering approaches are at least approximating the correct 

distribution of response times.  This claim is further supported by the fact that the scale 
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difference of the best performing collaborative filtering approaches are also similar to that of 

inverse Gaussian.  

However, even though they closely match the results of Inverse Gaussian, we cannot claim 

that they perform better than this baseline.  In every metric, the inverse Gaussian outperformed 

the best performing collaborative filtering approach, albeit by relatively small values in the case 

of scale difference and percentage within some error threshold.  Furthermore, the median based 

prediction outperformed all collaborative filtering approaches by a wide margin in terms of 

absolute error and scale difference. 

This can be summarized as the following sub-thesis: 

 

7.8.2.2. USENET 

The baseline results for the Usenet data from the 20 Newsgroups dataset is shown in Figure 

59.  Similar to the email results, the best performing baseline with respect to absolute error and 

scale difference was the constant prediction of the median response time.  It had a mean absolute 

error of 0.84 days or 20 hours and a scale difference of 1.34.  This meant that the average 

prediction using this baseline average within one day of the true time, and were only off by a 

little more than 1 order of magnitude.  Unlike email, there were two best approaches when 

evaluating in terms of error thresholds.  These two best approaches in terms of this metric, the 

inverse Gaussian and log normal baselines, showed no significant difference in results.  

Sub-Thesis XII: Email Response Time Predictions Hypothesis 

Using collaborative filtering to predict when an email message will receive its first 

response will generate predictions that are close in value to random, distribution-

based baselines.  However, the predictions will not be better than those of the 

baselines. 
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Figure 59. Baseline response time results for 20 Newsgroups 

Like in email, the collaborative filtering approaches never yielded results that were better 

than the best baseline for any of the evaluated metrics, as illustrated in Figure 60.  The best cases 

of collaborative filtering yielded mean absolute errors of approximately 1 day and scale 

differences of approximately 1.4.  Despite the fact that these are greater than the best performing 

baseline, these best collaborative filtering approaches were close in value and yielded 

approximately the same value.  This is better than in email, which collaborative filtering had 

values approximately the same as the second best baseline for these metrics. 
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Figure 60. Collaborative filtering response time results for 20 Newsgroups 

Again, as in email, the percentage of errors that were within our tested thresholds did not 

vary by large amounts across the different collaborative filtering approaches.  Approximately 

70% of the predictions were within 1 day, 7% within 1 hour, and 0.5% within 5 minutes. The 
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best baselines (inverse Gaussian and log normal) had approximately the same values with slight 

improvements as the threshold size decreased.  In these baselines, approximately 70% of the 

values were within 1 day, 10% were within 1 hour, and 1.5% were within 5 minutes. 

As in email, we cannot claim that these collaborative filtering approaches perform better than 

this baseline.  However, given that they were close to baseline metrics which modeled based on 

fitted distributions, we can state the collaborative fitting approaches appeared to effectively 

model the distribution of response times.  This leads to our next and final sub-thesis: 

 

7.9.  CONCLUSIONS 

In this chapter, we have tested the viability of predicting the response time.  To do so, we 

have: surveyed users about the usefulness of such predictions identified appropriate features that 

may be linked to response time, identified and developed appropriate metrics, identified 

appropriate baselines, identified appropriate prediction algorithms, and evaluated the predictions 

of the various algorithms using data from Stack Overflow, email, and Usenet. 

We were able to generate extremely good predictions for Stack Overflow questions using 

collaborative filtering.  In the best performing collaborative filtering approach, over 62.9% of the 

predictions were within 1 minute of the true response time, and over 78% were within an hour.  

This result was far better than any other baseline or predictive model that we tested. 

These same collaborative filtering approaches were not as successful when applied to email 

or Usenet data.  Our results indicated that collaborative filtering approach but did not exceed the 

Sub-Thesis XIII: Usenet Response Time Predictions Hypothesis 

Using collaborative filtering to predict when an email message will receive its first 

response will generate predictions that are close in value to random, distribution-

based baselines.  However, the predictions will not be better than those of the 

baselines. 
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results of the baselines in any of our tested metrics.  We therefore could not claim that any of the 

collaborative filtering approaches provided particularly good results for email.  

This failure in email and Usenet may be attributed to the fact that Stack Overflow is geared 

towards question answering, while email and Usenet are geared towards discussion.  Some 

discussions in email and Usenet may center around answering questions, but not all necessarily 

will.  Moreover, some email or Usenet messages may not explicitly require a response, while all 

Stack Overflow questions explicitly do.  This makes it a more difficult task for users to decide 

which email messages need responses and when to respond to them, because more factors must 

be weighed in these decisions.  Because of this need to weigh more factors, it is likely that the 

approaches require different prediction techniques and possibly different features to yield 

effective response time predictions. 

As we continue work in this area, we would like to apply more complex and sophisticated 

machine learning techniques, such as latent factor models.  These approaches have proved more 

effective when predicting ratings in other contexts than the simpler approaches tested here.  

Therefore, they may offer improved results over our observed ones in Stack Overflow and may 

yield successful predictions in email and Usenet.   

Our results do come with some limitations. 

We have predicted when a response will occur, but not how users may change their posts to 

improve their response rates.  Future work may make use of the mean feature vectors found in K-

means or well performing areas in the matrices constructed in collaborative filtering to find 

changes in features that would lead to reduced response times. 

We have focused on how our predictions could be used to assist the sender of a post. Future 

work may determine ways that predicted response times could assist the responders as well.  For 
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example, a post that has not received a response by its predicted response time may exhibit a 

higher priority, and thus a higher need of a response than that of a post that has not reached its 

predicted response time, as it might be one that that the moderators had accidentally missed.  In 

fact, participants in our study indicated that such predictions would be helpful.  Therefore, it may 

be possible and useful to incorporate our predictions with other metrics to determine the priority 

of posts sent to a community to help responders determine which posts need a response. 

This work also motivates research in applications that could make use of these predictions. In 

particular, it would be useful to apply this work to education where a student, based on the 

prediction from a Q&A or class discussion forum may decide to make an appointment with an 

instructor or a classmate based on the predicted response. Such application work would involve 

changing popular community-supporting systems, measuring the accuracy of the predictions, and 

surveying users about the usefulness of the predictions. 

Our work provides a basis to carry out these intriguing enhancements. 
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8. CONCLUSIONS AND FUTURE WORK 

Our goal was to assist users as they select which subjects (or others users) have access to an 

object, which we call the user selection problem.  Such selection requires both an up to date set 

of subjects, including subject groups, and a re-specification of the access matrix.  Recall, that the 

access is made up of rows which represent objects, columns which represent subjects, and cells 

which specify the rights the given subject has when accessing the given object. In different 

systems these subjects, objects, and rights may point to different values.   

For example, consider the four systems we evaluated in our work: email, Facebook, Usenet, 

and Stack Overflow. In email, subjects are email addresses or named groups of email addresses, 

objects are email messages, and rights include whether users can read or reply to messages.  In 

Facebook, subjects are users of the system or named groups of users (called friend lists), objects 

are posts or message sent or shared through the system, and rights are the ability to read, reply, 

comment on, like, or re-share a post or message.  In Usenet and Stack Overflow, subjects are 

forums (a.k.a. newsgroups), tags, or named groups of forums/tags; objects are posts; and rights 

are the ability to read, respond to, or edit posts.  

Rather than assist addressing the user selection problem automatically and without user 

validation, which may lead to a large number of errors, we instead offer recommendations to 

how such changes may be made, which users can then validate.  Since the user selection problem 

selects subjects and rights for a fixed object, these recommendations are focused on cases only 

when subjects change or rights are assigned to an object with the goal that these 
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recommendations reduce required user effort.  With less required effort, users are more likely to 

complete a user selection task and put forth all effort necessary to complete the task correctly.   

These goals gave us our overall thesis:  

 

There are many ways the sets of possible subject and rights can change, and we made 

recommendations to deal with two particular cases, when the number of possible subjects 

increases and when the rights are assigned to a new object. 

The number of possible subjects can increase for a variety of reasons, depending on the 

system.  In email, Usenet, and Stack Overflow, this occurs when a new message includes a 

recipient previously unseen in any prior message.  In Facebook, this occurs when a member of an 

ego network explicitly marks a new person as a friend. 

When such an increase occurs, the remaining access matrix may change by changing the 

groups of subjects.  New groups of subjects may need to be created, or existing groups of 

subjects may need to grow to accommodate any new individual subjects.  To assist users with 

these two cases, we developed foundational and evolutionary named group recommendations, 

which, respectively, predict which groups of subjects should be created and how existing groups 

of subjects should evolve. 

Our initial approach to foundational approach used a previously successful approach from 

Facebook that required users to determine when to generate recommendations and applied the 

approach to other systems and domains. The insight behind this foundational group 

recommendation approach is that groups of subjects can be extracted from a subject graph, 

OVERALL THESIS 

It is possible to make recommendations in email and communities for addressing the user 

selection problem in large-scale, computer-based sharing that will require less user effort than 

past recommendation techniques or cases with no recommendations. 
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where the nodes are subjects and an edge exists between two subjects if those subjects share a 

relationship.  In Facebook, such a graph was determined explicitly from user-specified friendship 

relationships.  However, in email, Usenet, and Stack Overflow, no user-specified relationships 

existed.  To apply this approach to these domains, we developed methods for inferring 

relationships to construct implicit social graphs, which could then be used to extract foundational 

recommendations. We evaluated these recommendations in terms of new metrics, developed by 

us, which measured, based on an offline model, the number of recommendations that were 

accepted and the number of relative additions and deletions required to address future messages.  

We observed positive results, which let us claim the following sub-theses: 

 

 

However, to use these recommendations, users must recognize when they should be 

generated.  To also automate this task, we developed a bursty approach that recommends the 

creation of new groups when a new message adds a burst of new subjects to the access matrix. 

Sub-Thesis I: Cross Application of Foundational Named Group Recommendations 

It is possible to cross-apply foundational named group recommendation approaches from 

Facebook to recommend named groups of email addresses in email such that some 

recommendations will be accepted and the use of the accepted recommended groups in 

future messages will require less effort than if no such recommendations had been 

generated. 

Sub-Thesis II: Non-User Element Foundational Named Group Recommendations 

It is possible to cross-apply foundational named group recommendation approaches from 

Facebook to recommend named groups of tags and newsgroups in Stack Overflow and 

Usenet respectively, respectively, such that some recommendations will be accepted and 

the use of the accepted recommended groups in future messages will require less effort 

than if no such recommendations had been generated. 
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We evaluated this bursty approach using the same metrics we developed and used for non-

bursty approaches, and found that recommendations from our bursty approach reduced the user 

effort based on the messages in our sample data sets. However, we could only show these results 

were significantly better in Usenet and Stack Overflow.  Therefore, we claim our next two sub-

hypotheses. 

 

 

 

This bursty approach still falls under the classification of a foundational recommendation 

approach, since it recommends the creation of new groups and not how existing groups should 

change. Based on the observations from past work that groups tend to be dynamic with new 

members being added and old members being removed over time [91], it is likely that existing 

subject groups need to change to remain relevant and useful for the future specification of rights.  

In accomplishing such a task, users must determine which groups should change and how those 

groups should change.  To reduce this cost to users, we developed an approach for 

recommending which groups should evolve and how.  We evaluated our approach on groups 

Sub-Thesis III: Email Foundational Bursty Named Group Recommendations Sub-Thesis 

In data from our user study, recommending the bursty creation of named groups in email 

based on seeds from collaborative events will be reused more often and will require the 

same or fewer additions and deletions than if they were created using past named group 

recommendation schemes. However, it is not clear that such results will apply in other 

data sets. 

Sub-Thesis IV: Communities Foundational Bursty Named Group Recommendations Sub-Thesis 

Recommending the bursty creation of named groups based in Newsgroups and Stack 

Overflow with collaborative events will be reused more often and will require the same or 

fewer additions and deletions than if they were created using past named group 

recommendation schemes. 
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from two types of systems, those that generate explicit social graph and those that infer implicit 

social graphs.  

For explicit graphs, we used data from Facebook, which had been used to evaluate past 

foundational group recommendation approaches. However, unlike the other evaluations we had 

performed, we did not have access to the objects or rights to which subjects these groups may be 

linked, and instead had access to ideal groups of subjects that users had specified.  Therefore, we 

evaluated how users would have to edit our recommendations with additions and deletions to 

match them to these ideal groups. We compared this approach with both a manual approach, in 

which users manually evolve all subject groups, and a full recommendation approach, which 

recommends a whole new set of subject groups to replace existing ones.  

We found that, when evaluated on these explicit graphs, our evolutionary approach was 

better than both the manual and foundational approaches when the number of unchanged groups 

exceeds the number of newly created groups.   This led us to claim the following sub-thesis: 

 

To evaluate the effectiveness of our evolutionary approach on implicit graphs, we used the 

email, Usenet, and Stack Overflow data sets used in our previous work in these domains.  When 

evaluating foundational approaches, we did not have the ideal subject groups against which to 

compare our evolutions.  Instead, we developed an evaluation model of separating messages into 

Sub-Thesis V: Explicit Graph Named Group Evolution Recommendations 

It is possible to develop a change recommendation approach for named groups from explicit 

graphs that automatically predicts which groups need change recommendation, such that 

editing and use of the recommendations will require less effort in terms of additions and 

deletions than predictions from a full recommendation approach or if no recommendations 

occurred at all when the number of unchanged groups exceeds the number of newly created 

groups. 
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three sets.  The first set of messages represented the old state of the system, and thus contained 

the oldest messages.  This was used to create the groups and implicit social graph in a past state.  

The next set of messages contained a newer group of messages to combine with the older state of 

the system.  This next set was used in conjunction with the first set of messages to generate the 

new state of the social graph and any evolutionary recommendations about subject groups from 

the previous state.  Finally, the last set of messages contained the most recent messages against 

which we could test both evolved and unevolved subject groups. To test these groups against 

these messages, we used the same metrics addition and deletion metrics used to measure the 

addressing of future messages with foundational recommendations. 

We found that the full recommendation approach outperforms the manual approach 

regardless of the growth rate of the social graph, and that our evolutionary recommendation 

outperforms manual by reducing the cost of additions in most cases for three different data sets 

of implicit graphs.  However, we never observed that our evolutionary recommendation 

outperformed full recommendation with statistical significance. Thus, we claimed the following 

sub-thesis:  

 

To accomplish our other goal of assisting with when rights are assigned to a new object, we 

looked at the addressing of recipients.  In message-based systems such as email, Usenet, and 

Stack Overflow, users must specify which subjects have what rights to access a new message by 

specifying the recipients of a message, where recipients are the subjects in each of these systems. 

Sub-Thesis VI: Implicit Graph Named Group Evolution Recommendations 

A full recommendation can require less effort in terms of additions and deletions than a 

manual approach for evolving named groups from implicit graphs, regardless of the growth 

rate of the graph.  However, it is not clear that our composable approach can perform better 

than the full recommendation one, regardless of the growth rate of the graph. 
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To assist with this task we developed, evaluated, and compared various approaches for 

recommending lists of additional recipients for a given message.  We first analyzed two areas of 

past work, content-based and group-based recommendations. Previous content-based 

recommendations predict subjects that have had access to past messages with content similar to 

the current message, and previous group-based recommendations predict subjects that are in 

included in groups of recipients in past messages that are similar to the groups of recipients (or 

seed) already specified in the current message based on an intersection relationship between the 

two sets of recipients.  Since these were originally targeted towards email, we evaluated these 

approaches in email using the Enron Email Corpus and measured the effort required for each of 

the approaches in terms of the number of lists users must scan, elements users must click, 

recipients users must manually enter, and switches between mouse and keyboard.  We found that 

group-based approaches consistently outperformed the content-based one, leading us to claim the 

following sub-thesis: 

 

Our next goal was to improve upon the results of past work.  To do so, we modified the 

group-based recipient recommendation approach to measure closeness of the seed to past 

recipient groups based on subset relationships rather than intersection ones.  We then evaluated 

these modified approaches against the intersection-based approaches of previous work, and 

found that subset-based approaches required less effort.  Therefore, we claimed the following 

sub-thesis: 

Sub-Thesis VII: Content and Group Flat Recipient Recommendation 

Previous group-based recipient recommendation in email requires less effort than previous 

content-based recipient recommendation in terms number of lists scanned, elements clicked, 

and recipients manually entered. 
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Based on the success of subset-based approaches over intersection-based approaches, we 

inferred there was a hierarchy of past recipient groups.  This implied that it would reduce effort 

to hierarchically grouped recipient predictions in order to allow users to select intermediate 

nodes in the hierarchy.  Therefore, we developed such an approach, which is composable with 

past flat recommendation approaches by hierarchically grouping predictions from past 

approaches.  To evaluate this approach in a way that is comparable with past flat evaluations, we 

used the same metrics used previously.  

We observed that our hierarchically-grouping approach required less effort in email than 

corresponding flat approaches.  Therefore, we claim the following sub-thesis:  

 

We also wanted to evaluate our hierarchical scheme in message-based systems other than 

email.  We therefore evaluated its use in selecting newsgroups for Usenet posts and tags for 

Stack Overflow questions.  Again, we used the effort metrics used to evaluate recipient 

recommendation in email.  We observed in both cases that both flat and hierarchical lists 

outperformed manual recipient specification.  However, only in Usenet did hierarchical lists 

significantly outperform flat ones.  In fact, the hierarchical lists in Stack Overflow could not be 

Sub-Thesis VIII: Subset and Intersection-based Flat Recipient Recommendation 

Subset-based recipient recommendation in email requires less effort than intersection-based 

recipient recommendation in terms number of lists scanned, elements clicked, recipients 

manually entered, and switches between mouse and keyboard. 

 

Sub-Thesis IX: Hierarchical Email Recipient Recommendation 

It is possible to hierarchically group flat recipient recommendation lists in email such that 

the hierarchically grouped lists require less effort than the flat lists in terms of number of 

lists scanned, elements clicked, recipients manually entered, and switches between mouse 

and keyboard. 
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shown to have statistically different effort requirements than flat ones. This led us to the 

following sub-theses: 

 

When users determine how to assign rights to certain messages by choosing recipients, there 

are many alternatives to how rights may be set.  Therefore, to decide among these multiple 

alternatives, users may decide use certain goals which they wish to achieve.  A common goal is 

that users often wish to achieve a timely response.  To help users achieve this desired outcome, 

we sought to predict when a message would receive its first response.   

Because of Stack Overflow’s strict typing of messages as questions, comments, or answers 

where each message thread started with a question, we first identified response time prediction 

techniques for Stack Overflow. We evaluated a variety of distribution-based, clustering, and 

collaborative filtering techniques against baselines based on random, median, or mean values.  

To measure the effectiveness of these approaches, we measured mean absolute error, mean scale 

difference (a new metric that we developed to measure the orders of magnitude difference 

between the prediction and true time), and the percentage of all predictions that were within 

certain absolute error thresholds.  From these results, we found that collaborative filtering 

yielded the best predictions.  In the best case, they yielded a mean scale difference of 2.5, with 

62.9% of predictions within 1 minute and 78% of predictions within 1 hour! Based on these 

findings, we claim the following sub-thesis: 

Sub-Thesis X: Hierarchical Usenet and Stack Overflow Recipient Recommendation 

It is possible to generate hierarchically-grouped recommendation lists for addressing 

recipients in Usenet and Stack Overflow such that they will require the same or less user 

effort than flat recommendation lists and less effort than manually addressing recipients in 

terms of scans of recommendations lists, selected recommendations, manually entered 

individuals, and switches between mouse and keyboard.  
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To test whether such an approach would yield similarly good predictions in systems without 

such strongly typed objects, we tested collaborative filtering against our baselines in our email 

and Usenet data sets.  Again, we evaluated these predictions in terms of mean absolute error, 

mean scale difference, and the percentage of all predictions that were within certain absolute 

error thresholds. As before, we also compared our predictions against baselines based on 

random, median, or mean values. 

Our predictions for email and Usenet performed close to but not better than our best 

performing baselines.  Therefore, we claimed the final two sub-theses: 

 

 

Sub-Thesis XI: Stack Overflow Response Time Predictions 

It is possible to use collaborative filtering to predict when a Stack Overflow question 

will receive its answers, such that the predicted time will be closer to the actual 

response time than random predictions, distribution based predictions, or predictions 

made using k-means clustering. 

Sub-Thesis XII: Email Response Time Predictions Hypothesis 

Using collaborative filtering to predict when an email message will receive its first 

response will generate predictions that are close in value to random, distribution-

based baselines.  However, the predictions will not be better than those of the 

baselines. 

Sub-Thesis XIII: Usenet Response Time Predictions Hypothesis 

Using collaborative filtering to predict when a Usenet message will receive its first 

response will generate predictions that are close in value to random, distribution-

based baselines.  However, the predictions will not be better than those of the 

baselines. 
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8.1. FUTURE WORK 

When combined together, our sub-theses provide evidence to support our overall thesis.  

Moreover, our work has motivated multiple questions that may be answered by future work.   

8.1.1. APPLICATIONS TO OTHER SYSTEMS AND DOMAINS 

Since our work can be described using the access matrix, is this work applicable to and 

helpful in other systems or domains that make use of the access matrix? For example, RBAC 

requires that users are sorted into roles and these roles are assigned rights with respect to objects 

in the system.  Since this system requires groups of subjects in the form of roles and the 

assigning of rights with respect to particular objects, our approaches may be applicable in these 

systems.  Similarly, various massively multiplayer online role-playing games (MMORPGs), such 

as World of Warcraft, or multiplayer online battle arena (MOBA) games, such as Defense of the 

Ancients or League of Legends, require that users build or join games, groups, or guilds, 

therefore building groups of subjects or selecting individual subjects to be associated with a 

particular shared game (object).  As their names indicate, these systems are intended to be large 

and scalable, and therefore may also benefit from our approaches to grouping or recipient 

suggestion.  

Moreover, RBAC and MOBA systems already have approaches in place for predictions.   In 

RBAC, predictions can help (i) recommend an initial set of roles and (ii) evolve the current set of 

roles to a more optimal state. To illustrate predictions in MOBA systems, consider League of 

Legends. In these systems, predictions help rank users in order to have matches made up of users 

of similar skill levels [101].  Is it possible to reduce the conceptual gap between these two fields 

to gain benefits of cross fertilization?  Such cross-fertilization could allow the predictive 
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approaches in these systems to apply to the domains that we targeted, or it could bring about the 

development of new techniques that provide benefits not seen in a single system or domain.  

8.1.2. OTHER METRICS 

Our work also provides motivation for future work in user effort metrics.  In particular, are 

there are other metrics or evaluation methods that can better measure our efforts?  All of our 

evaluations were based on discrete actions users had to take, such as additions, deletions, scans, 

clicks, and manual entries, but other work has found that other methods can also measure user 

effort.  For example, Gailliot et al. [46] observed that participants completing a task requiring 

more self-control, and thus a more difficult task, were more likely to have lower glucose levels 

following the completion of the task.  Moreover, they observed that a participant having a lower 

glucose level following the task correlated with lower performance on the task. Similarly, 

Kahneman & Beatty [58] observed that as participants were required to recall and/or transform 

words or digit sequences, the pupil size was highly correlated with the mental load of a subject.  

Therefore, it may be helpful to also measure effort or difficulty of recommender systems in terms 

of blood-glucose level or pupil diameter. 

Also in terms of user effort metrics, is it possible to provide a more fine-grained cost 

associated with our discrete action metrics?  Our metrics only measure whether an action such 

as clicking a recommendation or manually entering a recipient occurred.  However, it may be 

possible to compute this cost at a finer-grained scale, such as by capturing the average cost in 

number of key presses or time spent to complete each of these actions (a capability past work has 

also shown to be possible with the GOMS model [12,29]) . In order to do so, future work would 

need to measure the actual costs users pay when conducting such actions, which means 

developing tools to measure such fine-grained costs. 
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Besides general questions about predictions in large scale sharing, our work motivates 

questions particular to our different areas of predictions.   

8.1.3. FOUNDATIONAL NAMED GROUP RECOMMENDATIONS 

Our work in foundational named group recommendation suggests many such questions: 

(a) Would our approaches be effective for groups that serve purposes other than addressing 

future messages? Our evaluation of named groups focused on evaluation for use in future 

messages, but we did not evaluate other uses.  For example, other work has found that groups 

can be useful to understand social structures, specify profile information about group members, 

or filter incoming information [15]. Future work may study how well our recommendations are 

helpful in such cases.   

(b) Is it possible to adjust for incorrectly addressed messages? Both the generation and 

evaluation of foundational groups assumed that all messages contained the correct recipients. 

Past work has observed that at least 9.27% of email users have incorrectly addressed messages 

[31].  Therefore, it is possible that some of the messages used in our work had similarly incorrect 

recipients. Future work can look into techniques to remove or correct messages with incorrect 

recipients.  

(c) Do our bursty group predictions apply to explicit graphs? Because the data about explicit 

graphs gathered from Facebook data did not contain messages or other collaborative actions 

indicating bursts of change in the social graph, we could not evaluate our bursty foundational 

recommendations in these data sets with explicit graphs.  Future work can evaluate this bursty 

model in such explicit systems by collecting data about explicit graphs alongside collaborative 

actions. 



 

325 

 

8.1.4. EVOLUTIONARY NAMED GROUP RECOMMENDATIONS 

Since our evaluation for both foundational and evolutionary recommendations was very 

similar, the same questions apply to evolutionary that applied to foundational.  However, we 

have identified one new question that is particular to evolutionary recommendations: Is it 

possible to better model the growth of explicit ego graphs? The data sets about explicit graphs 

contained nodes and edges in the explicit graphs, but not when edges or nodes were added.  This 

meant that we had to model rather than replay graph growth.  If future work were to create 

expanded data sets that marked when edges or nodes were added to explicit graphs, it may be 

possible to more accurately model or replay rather than model social graph growth.   

8.1.5. HIERARCHICAL EMAIL RECIPIENT RECOMMENDATION 

Our work in hierarchical recipient recommendation also leaves its own questions unanswered 

that may be addressed by future work:  

(a) Can other schemes of content analysis be incorporated to create effective prediction lists? 

We have not been able to make content schemes work efficiently or effectively.  Perhaps other 

approaches would be helpful if incorporated into our recipient predictions.  Specifically, we are 

hopeful about incorporating template-based analysis, where messages are classified by specific 

templates. 

(b) Can prediction algorithms take into account ephemeral group evolution? It may be that 

ephemeral groups evolve like persistent ones, where two messages addressed to two different 

sets of recipients are, in reality, addressed to the same changing ephemeral group. The current 

algorithms, including ours, create a new ephemeral group with each membership change, and 

therefore cannot take such evolution into account. 
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(c) Do our recommendations introduce higher error when users interact with our systems?  

Users may tend to place a high trust in our recommendations if they are often correct, and 

therefore may trust and select our recommendations in cases when they are incorrect.  

(d) Are there other, better interfaces for displaying recipient recommendation? The Gmail 

user-interface assumed by our work presents a non-scrollable linear list of at most four items 

displayed dynamically for each message, but there are other alternative user-interfaces possible. 

It would be useful to compare the usability of existing and new user-interfaces for token 

prediction in general and email-recipient prediction in particular. Such work could determine the 

impact of increasing the size of the recommended list, providing a scrollable list, providing a 

static message-independent area for displaying and selecting recipients, showing hierarchical 

lists using a hierarchical display, and integrating token completion and prediction by showing for 

each completed email address the associated recipient predictions.  

(e) Is it possible to present recipient recommendations of individuals, ephemeral groups, and 

persistent groups side-by-side?  Our work is limited in that it can only display integrated 

recommendations of individuals and ephemeral groups, but it may helpful to also integrate 

persistent groups as well. To illustrate how this may work, consider our mock-up of a 

hypothetical approach, shown in Figure 61. In Figure 61(a), Alice has an intended group of 

recipients whom she wants to email about a chapter outline for an exam.  In Figure 61(b), Alice 

starts addressing this group by starting to type Bob’s name with “Bo”.  Based on this value being 

typed, our hypothetical system suggests both token and group completion, side-by-side, in Figure 

61(b).  In this side-by-side suggestion, there is the suggested individual Bob, the named group 

“Study Group”, and the unnamed group (Bob, Fran, Gary).  However, if Alice has entered a full 

token, as shown in Figure 61(c) where she has entered Bob, the system cannot offer a token 
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completion.  However, this can also still suggest integrated named and unnamed groups, as the 

figure shows. 

 

Figure 61. Hypothetical side-by-side persistent and ephemeral group recommendation 

8.1.6. RESPONSE TIME PREDICTION 

Finally, our work in response time predictions suggests several questions of its own: 

(a) Is it possible to effectively predict response time for asynchronous and untyped message-

based systems? Future work in response time predictions may extend upon our own by providing 

better predictions for untyped messages systems. Our results were successful in predicting 

response times at the correct times for the Stack Overflow message-based system, which has 

typed messages.  However, when we tested the same successful approach for the untyped 

messages in email and Usenet, we were not able to generate similarly successful predictions.  

     From: 

         To: 

  Subject: 

Alice 

Bob, Chris, David, Eva 

Chapter outline for the exam 

(a) Intended Recipients 

     From: 

         To: 

  Subject: 

Alice 

Chapter outline for the 

exam 

Bo 

Bob <bob@cs.univ.edu> 

Study Group (Bob, Chris, David, Eva) 

(Bob, Fran, Gary) 

Named Group 

Unnamed Group 

(b) Completing Individuals 

(c) Completing Groups 

     From: 

         To: 

  Subject: 

Alice 

Chapter outline for the 

exam 

Bob, 

Study Group (Bob, Chris, David, Eva) 

(Bob, Fran, Gary) 

Named Group 

Unnamed Group 
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Future work may be able to identify or develop approaches that are more successful in these 

cases.  For example, predictions based on the content of messages may be helpful 

(b)  Could more advanced collaborative filtering techniques provide better response time 

predictions? Our collaborative filtering techniques were relatively simple, and there are many 

other approaches that are more sophisticated and may prove more successful.  For example, it 

may be effective to choose approaches that have proven to be most effective in other contexts, 

such as the alternating least squares form of latent factor models, which  was the most successful 

approach at predicting the ratings of Netflix movies [62]. 

Our work provides a basis and motivation for carrying out these future research directions. 
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APPENDIX A: EMAIL USER STUDY SURVEY GENERAL SELECTIONS 

RESULTS 

 

 

 

 

Have you been in any of following situation(s) where you needed a response to an email 

or a post on an online forum (such as Piazza or Stack Overflow) quickly enough to meet 

some deadline? 

 

Coordinating with people about meeting later 62.5% 

Clarifying assignments or projects with professors, TAs, bosses, 

colleagues, coworkers, or others before they were due 
50.0% 

Coordinating with colleagues, coworkers, or others about upcoming 

assignments or projects you are collaborating on 
100.0% 

Getting necessary information from professors, TAs, bosses, colleagues, 

coworkers, or others before meetings, presentations, exams, or quizzes 
0.0% 

Other 0.0% 

 

In the above situation(s) that you selected, suppose that as you were composing your 

message or post we predicted if and when you would receive a response (with a small 

chance of error). Based on that prediction, assume you determined that the response 

would not arrive quickly enough for you to meet your deadline. Would you do any of the 

following? 

(Only shown if selected one of the answers for the above question “Have you been in any 

of following situation(s)…?”) 

  

I would remove one or more of the already listed recipients before 

sending 
18.8% 

I would keep one or more of the original recipients 18.8% 

I would send it to more people. 25.0% 

I would not send or post it. 6.3% 

If the message was an email, I would post it on a forum, and if it was a 

forum post, I would send it via email. 
12.5% 

I would use means other than sending an email or posting on forums (e.g. 

searching Google, meeting someone in person, sending an IM) to find an 

answer. 

37.5% 

Other 12.5% 

 

Why would you remove them?  

(Only shown if "I would remove one or more of the already listed recipients before 

sending" is selected) 

I would not want to bother them. 33.3% 

I would want to avoid unnecessarily sharing sensitive or private 

information with them. 

0.0% 

Other 0.0% 
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How would you find your answer?  

(Only shown if "I would use means other than sending an email or posting on forums" is 

selected) 

Search engine (Google, etc.) 66.7% 

Sending an instant message 100.0% 

Call someone on the phone 66.7% 

Meet in person with recipient(s) 66.7% 

Meet in person with someone else 33.3% 

Other 0.0% 

 
Suppose we were able to predict (with a small chance of error) how long it would take 

you to respond to a particular post or message and notify you when you took longer than 

normal to respond. Which, if any, of the following situations have you experienced where 

that would helpful? 

I needed to ensure I would not be judged poorly. 31.25% 

I needed to ensure I would not miss some opportunity. 37.5% 

Other 18.8% 

 

Based on your experience, how might predicting if and when responses occur for senders 

or receivers be useless or harmful? 

A sender can determine private information about the receiver(s) 

based on the predicted response times. 

25.0% 

Because of potential error, senders or receivers may take wrong 

actions or have unreasonable expectations. 

50.0% 

Others may already remind senders if they miss or are close to 

missing a deadline. 

12.5% 

Other 6.25% 
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APPENDIX B: EMAIL USER STUDY SURVEY SHORT ANSWERS 

 

 

Parent Question 

Have you been in any of following situation(s) where you needed a response to an email or a 

post on an online forum (such as Piazza or Stack Overflow) quickly enough to meet some 

deadline? 

Please elaborate on your answer (e.g. give details about your selected option(s) or reasons why 

you did not select any of the above options) 

Participant Answer 

2 I usually worry about my advisor responding when we have paper deadlines, making 

sure we get assignments written and reviewed to send out to students, assignments 

graded in time to release them to students, and making sure students questions are 

answered before assignment deadlines, quizzes, or exams. 

6 When I have questions about Homework or Exams and I email a professor I like to 

receive a response. 

7 Had to email my fellow classmates to meet later 

8 If I email in any of the above situations, it is usually close enough to the deadline that 

the answer is something really important to getting the assignment done, so knowing 

if a response is even coming could decide whether I just act on instinct or if I get a 

clear response. Especially for meeting people: some people who I've worked with 

only communicate with me via email, so if plans change minutes prior to a meeting, 

knowing that they are responding (presumably to change plans last minute) could be 

important for planning. 

10 Course Scheduling, Removing adviser holds (email from the Registrar's office), 

meetings for candidate's day, etc. it would have been helpful to know the response 

time.  For the others, they are not applicable as far as assignments or exams. 

16 Especially in college, I used email repeatedly for assignments and meetings. 
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Parent Question 

In the above situation(s) that you selected, suppose that as you were composing your message or 

post we predicted if and when you would receive a response (with a small chance of error). 

Based on that prediction, assume you determined that the response would not arrive quickly 

enough for you to meet your deadline. Would you do any of the following? 

Other (Please Specify) 

Participant Answer 

7 I would send the message with high importance 

Please elaborate on your answer (e.g. give details about your selected option(s) or reasons why 

you did not select any of the above options) 

Participant Answer 

2 Usually, I would send it anyway in case they responded quickly enough.  I would also 

either contact other people to make sure the task gets done, or try to track someone 

down either through IM or in person. 

6 If my deadline will not be met I need to find alternative methods 

7 N/A 

8 Usually for time sensitive things it would be too late to see someone in person, so I 

would try to find the information I needed for my deadline in other ways. Forums are 

not usually my outlet for that: I prefer to know someone else in the class or (in the case 

of student groups) just ask someone else in the group. If I'm posing a question to a 

group and not a class, I'd probably have sent the question to the entire group anyway, 

so there's no real point to changing my recipients. 

10 Search engine would not be applicable. 

16 If I needed a response I would still hope that I would get one. 
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Parent Question 

Suppose we were able to predict (with a small chance of error) how long it would take you to 

respond to a particular post or message and notify you when you took longer than normal to 

respond. Which, if any, of the following situations have you experienced where that would 

helpful? 

Other (Please Specify) 

Participant Answer 

6 I often forget to reply to messages 

8 Easier to ignore people if your response time isn't being checked. 

9 may have forgotten to respond -- good reminder 

Please elaborate on your answer (e.g. give details about your selected option(s) or reasons why 

you did not select any of the above options) 

Participant Answer 

2 I have forgotten to respond to messages in the past, which has led to poor first 

impressions or missing some deadlines.  I believe a feature like this would help with 

this issue. 

6 It'll be nice to have a reminder in case I forget to respond. 

7 I like to respond very quickly 

8 Though having a computer note when I am responding/taking too long to respond 

boosts accountability on my part, sometimes I get undesirable (but non-spam) mail 

from people. In these cases, I would rather not even have the person know that I read 

the email, much less that I am dawdling on a response (which probably isn't 

forthcoming anyway). That sounds shallow and self-centered, but it's true. 

10  A longer response time from me depends on priority of the message and an 

overflowing inbox of email (not having the time to respond in a timely manner. 

16 My response time would be abnormally long, so it would probably not help in 

adjusting my behavior. Deadlines, especially for survey responses, would be helpful. 
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Parent Question 

Based on your experience, how might predicting if and when responses occur for senders or 

receivers be useless or harmful? 

Other (Please Specify) 

Participant Answer 

8 Reveal people ignoring each other's attempts to reach them. 

Please elaborate on your answer (e.g. give details about your selected option(s) or reasons why 

you did not select any of the above options) 

Participant Answer 

2 I often only respond slowly with my students so they do work on their own or do not 

leave work until just before the deadline.  If they saw predictions that I typically 

respond faster, it would not help me achieve my goals.  However, I don't think already 

having reminders from others would be an issue.  Essentially, this sort of feature would 

help catch times when I forgot to respond and others forgot to remind me. 

6 Wouldn't like someone to be pressuring me to respond to a message just because they 

received a notification that I should've responded already. 

7 They can predict your habits 

8 If there is a deadline that I want to make, you better bet I have it written down in six 

places. It just gets embarrassing then, when someone asks you to do something that 

you just want to ignore. I guess that having a response-checker would increase 

accountability and disincentivise procrastination, but honestly it is creepy enough that 

facebook tracks your every move from seeing a message to typing to responding. 

Email is kind of a haven from that. 
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APPENDIX C: MESSAGE-BASED DATASET STATISTICS 

 

Message-based statistics: 

 

Thread-based statistics: 

 

Dataset Total messages 
Collaborators per message 

min max median mean stdev Messages with more than 2 

Email user study 6198 1 197 2 3.97 13.81 0.967 

Enron Email Corpus 143895 1 763 2 7.20 22.9 0.977 

20 Newsgroups 19466 1 18 1 1.67 1.44 0.286 

Stack Overflow 

public data dump 
10000 1 5 3 2.95 1.22 0.875 

 

Dataset Total Threads 
Messages per thread 

min max median mean stdev Threads with more than 2 

Email user study 3600 1 81 1 1.72 2.79 0.120 

Enron Email Corpus 0 NaN NaN NaN NaN NaN NaN 

20 Newsgroups 14204 1 24 1 1.37 0.97 0.161 

Stack Overflow 

public data dump 
10000 1 439 5 6.86 7.12 0.140 
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APPENDIX D: RELATIONSHIP-BASED DATASET STATISTICS 

 

 
 

 

 
 

 

 
 

 

Note: The original Kelli & Dewan study [15] was able to parse ideal lists for only 10 

accounts. However, we were able to improve upon parsing techniques used to create ideal lists 

by allowing more advanced features such as Unicode characters.  This then allowed us to expand 

the number of parsable ideal lists, and thus testable accounts. 

Dataset 
Total 

Accounts 

Vertices in Social Graph Edges in Social Graph 

min max median mean stdev min max median mean stdev 

SNAP – 

Facebook 
8 52 786 196 288.5 255.037 146 14024 2106 3539.1 4501.9 

Bacon & 

Dewan 

User 

study 

15 85 690 319 366.7 194.8 629 13,580 5580 5844.7 4185 

 

Dataset 
Degree of Vertices 

min max median mean stdev 

SNAP – 

Facebook 
1 136 17 24.5 22.9 

Bacon & 

Dewan 

User 

study 

1 237 23 31.9 28.1 

 

Dataset 
Number of Ideal Groups Size of Ideal Groups 

min max median mean stdev n min max median mean stdev 

SNAP – 

Facebook 
7 32 15.5 17.25 7.6 138 1 225 7 19.3 35.5 

Bacon & 

Dewan 

User 

study 

6 26 12 12.5 5.32 187 1 403 13 38.5 66.5 
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APPENDIX E: IMPLEMENTATION 

 

The implementation of the predictions approaches discussed here have been implemented in 

single toolkit called SOMINT, or SOcial MINing Toolkit.  This toolkit is publicly accessible in 

the GitHub repository: 

https://github.com/jwbartel/SOMINT 

The implementations of the different approaches at the time of writing are detailed in the 

table below: 

Approach Implementation(s) 

Inferring social 

graphs from messages 

 data.preprocess.graphbuilder.SimpleActionBasedGraphBuilder 

 data.preprocess.graphbuilder.TimeThresholdActionBasedGraphBuilder 

 data.preprocess.graphbuilder. InteractionRankWeightedActionBasedGraphBuilder 

Cross-Application 

Foundational Groups 

 recommendation.groups.seedless.actionbased. 

GraphFormingActionBasedSeedlessGroupRecommender 

Bursty Foundational 

Groups  
 recommendation.groups.seedless.actionbased.bursty.BurstyGroupRecommender 

Evolutionary Named 

Groups 

 recommendation.groups.evolution.composed. 

ComposedGroupEvolutionRecommender 

Recipient 

Recommendation 

 recommendation.recipients.groupbased.interactionrank. 

InteractionRankGroupBasedRecipientRecommender 

 recommendation.recipients.groupbased.hierarchical. 

HierarchicalRecipientRecommender 

K-means Response 

Time Prediction 
 prediction.response.time.message.WekaClusteringMessageResponseTimePredictor 

Sigmoid Weighted K-

Means Response 

Time Prediction 

 prediction.response.time.message. 

SigmoidWeightedKmeansMessageResponseTimePredictor 

Collaborative 

Filtering Response 

Time Prediction 

 prediction.response.time.message.SlopeOneResponseTimePredictor 

 prediction.response.time.message. 

UserBasedCollaborativeFilterResponseTimePredictor 

 

https://github.com/jwbartel/SOMINT
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